Post

检测系列汇总

检测系列汇总
Methodbackbonetest sizeVOC2007VOC2010VOC2012ILSVRC 2013MSCOCO 2015Speed
OverFeat     24.3%  
R-CNNAlexNet 58.5%53.7%53.3%31.4%  
R-CNNVGG16 66.0%     
SPP_netZF-5 54.2%  31.84%  
DeepID-Net  64.1%  50.3%  
NoC73.3% 68.8%     
Fast-RCNNVGG16 70.0%68.8%68.4% 19.7%(@[0.5-0.95]), 35.9%(@0.5) 
MR-CNN78.2% 73.9%     
Faster-RCNNVGG16 78.8% 75.9% 21.9%(@[0.5-0.95]), 42.7%(@0.5)198ms
Faster-RCNNResNet101 85.6% 83.8% 37.4%(@[0.5-0.95]), 59.0%(@0.5) 
YOLO  63.4% 57.9%  45 fps
YOLO VGG-16  66.4%    21 fps
YOLOv2 448x44878.6% 73.4% 21.6%(@[0.5-0.95]), 44.0%(@0.5)40 fps
SSDVGG16300x30077.2% 75.8% 25.1%(@[0.5-0.95]), 43.1%(@0.5)46 fps
SSDVGG16512x51279.8% 78.5% 28.8%(@[0.5-0.95]), 48.5%(@0.5)19 fps
SSDResNet101300x300    28.0%(@[0.5-0.95])16 fps
SSDResNet101512x512    31.2%(@[0.5-0.95])8 fps
DSSDResNet101300x300    28.0%(@[0.5-0.95])8 fps
DSSDResNet101500x500    33.2%(@[0.5-0.95])6 fps
ION  79.2% 76.4%   
CRAFT  75.7% 71.3%48.5%  
OHEM  78.9% 76.3% 25.5%(@[0.5-0.95]), 45.9%(@0.5) 
R-FCNResNet50 77.4%    0.12sec(K40), 0.09sec(TitianX)
R-FCNResNet101 79.5%    0.17sec(K40), 0.12sec(TitianX)
R-FCN(ms train)ResNet101 83.6% 82.0% 31.5%(@[0.5-0.95]), 53.2%(@0.5) 
PVANet 9.0  84.9% 84.2%  750ms(CPU), 46ms(TitianX)
RetinaNetResNet101-FPN       
Light-Head R-CNNXception*800/1200    31.5%@[0.5:0.95]95 fps
Light-Head R-CNNXception*700/1100    30.7%@[0.5:0.95]102 fps

source,另一个资料

Papers

paper from 2014-19

Deep Neural Networks for Object Detection

  • paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

  • arxiv: http://arxiv.org/abs/1312.6229
  • github: https://github.com/sermanet/OverFeat
  • code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

Scalable Object Detection using Deep Neural Networks

  • intro: first MultiBox. Train a CNN to predict Region of Interest.
  • arxiv: http://arxiv.org/abs/1312.2249
  • github: https://github.com/google/multibox
  • blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection

  • intro: second MultiBox
  • arxiv: http://arxiv.org/abs/1412.1441
  • github: https://github.com/google/multibox

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  • intro: ECCV 2014 / TPAMI 2015
  • keywords: SPP-Net
  • arxiv: http://arxiv.org/abs/1406.4729
  • github: https://github.com/ShaoqingRen/SPP_net
  • notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

  • intro: ICLR 2015
  • arxiv: http://arxiv.org/abs/1412.6856
  • paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
  • paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
  • slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  • intro: CVPR 2015
  • project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
  • arxiv: https://arxiv.org/abs/1502.04275
  • github: https://github.com/YknZhu/segDeepM

Object Detection Networks on Convolutional Feature Maps

  • intro: TPAMI 2015
  • keywords: NoC
  • arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  • arxiv: http://arxiv.org/abs/1504.03293
  • slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
  • github: https://github.com/YutingZhang/fgs-obj

DeepBox: Learning Objectness with Convolutional Networks

  • keywords: DeepBox
  • arxiv: http://arxiv.org/abs/1505.02146
  • github: https://github.com/weichengkuo/DeepBox

Object detection via a multi-region & semantic segmentation-aware CNN model

  • intro: ICCV 2015
  • keywords: MR-CNN
  • arxiv: http://arxiv.org/abs/1505.01749
  • github: https://github.com/gidariss/mrcnn-object-detection
  • notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
  • notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  • intro: ICCV 2015
  • intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
  • arxiv: http://arxiv.org/abs/1506.07704
  • slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
  • slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

  • arxiv: http://arxiv.org/abs/1509.04874
  • demo: http://pan.baidu.com/s/1mgoWWsS
  • KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

  • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
  • keywords: Inside-Outside Net (ION)
  • arxiv: http://arxiv.org/abs/1512.04143
  • slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
  • coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard

Adaptive Object Detection Using Adjacency and Zoom Prediction

  • intro: CVPR 2016. AZ-Net
  • arxiv: http://arxiv.org/abs/1512.07711
  • github: https://github.com/luyongxi/az-net
  • youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN: an Iterative Grid Based Object Detector

  • arxiv: http://arxiv.org/abs/1512.07729

We don’t need no bounding-boxes: Training object class detectors using only human verification

  • arxiv: http://arxiv.org/abs/1602.08405

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  • arxiv: http://arxiv.org/abs/1604.00600

A MultiPath Network for Object Detection

  • intro: BMVC 2016. Facebook AI Research (FAIR)
  • arxiv: http://arxiv.org/abs/1604.02135
  • github: https://github.com/facebookresearch/multipathnet

CRAFT Objects from Images

  • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
  • project page: http://byangderek.github.io/projects/craft.html
  • arxiv: https://arxiv.org/abs/1604.03239
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
  • github: https://github.com/byangderek/CRAFT

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

  • intro: CVPR 2016 Oral. Online hard example mining (OHEM)
  • arxiv: http://arxiv.org/abs/1604.03540
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
  • github(Official): https://github.com/abhi2610/ohem
  • author page: http://abhinav-shrivastava.info/

S-OHEM: Stratified Online Hard Example Mining for Object Detection

https://arxiv.org/abs/1705.02233


Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

  • intro: CVPR 2016
  • keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC)
  • paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

  • arxiv: http://arxiv.org/abs/1605.06409
  • github: https://github.com/daijifeng001/R-FCN
  • github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
  • github: https://github.com/Orpine/py-R-FCN
  • github: https://github.com/PureDiors/pytorch_RFCN
  • github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
  • github: https://github.com/xdever/RFCN-tensorflow

R-FCN-3000 at 30fps: Decoupling Detection and Classification

https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

  • arxiv: http://arxiv.org/abs/1607.05066

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  • intro: ECCV 2016
  • intro: 640×480: 15 fps, 960×720: 8 fps
  • keywords: MS-CNN
  • arxiv: http://arxiv.org/abs/1607.07155
  • github: https://github.com/zhaoweicai/mscnn
  • poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning

  • intro: VOC2007: 78.6%, VOC2012: 74.9%
  • arxiv: http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

  • intro: WACV 2017. SubCNN
  • arxiv: http://arxiv.org/abs/1604.04693
  • github: https://github.com/tanshen/SubCNN

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

  • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
  • arxiv: https://arxiv.org/abs/1611.08588
  • github: https://github.com/sanghoon/pva-faster-rcnn
  • leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Gated Bi-directional CNN for Object Detection

  • intro: The Chinese University of Hong Kong & Sensetime Group Limited
  • keywords: GBD-Net
  • paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
  • mirror: https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection

  • intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
  • intro: gated bi-directional CNN (GBD-Net)
  • arxiv: https://arxiv.org/abs/1610.02579
  • github: https://github.com/craftGBD/craftGBD

StuffNet: Using ‘Stuff’ to Improve Object Detection

  • arxiv: https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

  • arxiv: https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning

  • intro: Deep Reinforcement Learning Workshop (NIPS 2016)
  • project page: https://imatge-upc.github.io/detection-2016-nipsws/
  • arxiv: https://arxiv.org/abs/1611.03718
  • slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning
  • github: https://github.com/imatge-upc/detection-2016-nipsws
  • blog: http://jorditorres.org/nips/

Learning to detect and localize many objects from few examples

  • arxiv: https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors

  • intro: CVPR 2017. Google Research
  • arxiv: https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

  • arxiv: https://arxiv.org/abs/1612.01051
  • github: https://github.com/BichenWuUCB/squeezeDet
  • github: https://github.com/fregu856/2D_detection

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/1612.03144

Dynamic Feature Pyramid Networks for Object Detection

  • intro: Zhejiang University & Noah’s Ark Lab & Westlake University
  • arxiv: https://arxiv.org/abs/2012.00779

Implicit Feature Pyramid Network for Object Detection

  • intro: MEGVII Technology
  • arxiv: https://arxiv.org/abs/2012.13563

You Should Look at All Objects

  • intro: ECCV 2022
  • intro: The University of Hong Kong & Bytedance & University of Rochester
  • arxiv: https://arxiv.org/abs/2207.07889
  • github: https://github.com/CharlesPikachu/YSLAO

Action-Driven Object Detection with Top-Down Visual Attentions

  • arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

  • intro: CMU & UC Berkeley & Google Research
  • arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

  • intro: Inha University
  • arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

  • intro: University of Maryland & Mitsubishi Electric Research Laboratories
  • arxiv: https://arxiv.org/abs/1702.01478

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  • keykwords: CC-Net
  • intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
  • arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

  • intro: ICCV 2017 (poster)
  • arxiv: https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

  • arxiv: https://arxiv.org/abs/1704.04224

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

  • intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
  • arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

  • intro: Point Linking Network (PLN)
  • arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

https://arxiv.org/abs/1706.05274

Few-shot Object Detection

https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

https://arxiv.org/abs/1706.09180

Towards lightweight convolutional neural networks for object detection

https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1707.01691
  • github: https://github.com/taokong/RON

Deformable Part-based Fully Convolutional Network for Object Detection

  • intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
  • arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

  • intro: ICCV 2017
  • keywords: Recurrent Scale Approximation (RSA)
  • arxiv: https://arxiv.org/abs/1707.09531
  • github: https://github.com/sciencefans/RSA-for-object-detection

DSOD: Learning Deeply Supervised Object Detectors from Scratch

img

  • intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
  • arxiv: https://arxiv.org/abs/1708.01241
  • github: https://github.com/szq0214/DSOD

Object Detection from Scratch with Deep Supervision

https://arxiv.org/abs/1809.09294

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.02863

Incremental Learning of Object Detectors without Catastrophic Forgetting

  • intro: ICCV 2017. Inria
  • arxiv: https://arxiv.org/abs/1708.06977

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

  • intro: NTU, Singapore & Amazon
  • keywords: multi-instance multi-label domain adaption learning framework
  • arxiv: https://arxiv.org/abs/1711.05954

MegDet: A Large Mini-Batch Object Detector

  • intro: Peking University & Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1711.07240

Receptive Field Block Net for Accurate and Fast Object Detection

  • intro: RFBNet
  • arxiv: https://arxiv.org/abs/1711.07767
  • github: https://github.com//ruinmessi/RFBNet

An Analysis of Scale Invariance in Object Detection - SNIP

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1711.08189
  • github: https://github.com/bharatsingh430/snip

Feature Selective Networks for Object Detection

https://arxiv.org/abs/1711.08879

Learning a Rotation Invariant Detector with Rotatable Bounding Box

  • arxiv: https://arxiv.org/abs/1711.09405
  • github(official, Caffe): https://github.com/liulei01/DRBox

Scalable Object Detection for Stylized Objects

  • intro: Microsoft AI & Research Munich
  • arxiv: https://arxiv.org/abs/1711.09822

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

  • arxiv: https://arxiv.org/abs/1712.00886
  • github: https://github.com/szq0214/GRP-DSOD

Deep Regionlets for Object Detection

  • keywords: region selection network, gating network
  • arxiv: https://arxiv.org/abs/1712.02408

Training and Testing Object Detectors with Virtual Images

  • intro: IEEE/CAA Journal of Automatica Sinica
  • arxiv: https://arxiv.org/abs/1712.08470

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

  • keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
  • arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

  • intro: Tsinghua University & JD Group
  • arxiv: https://arxiv.org/abs/1801.01051

Localization-Aware Active Learning for Object Detection

  • arxiv: https://arxiv.org/abs/1801.05124

Object Detection with Mask-based Feature Encoding

https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

  • intro: AAAI 2018
  • arxiv: https://arxiv.org/abs/1803.01529

Pseudo Mask Augmented Object Detection

https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

  • intro: ECCV 2018
  • keywords: DCR V1
  • arxiv: https://arxiv.org/abs/1803.06799
  • github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection

  • keywords: DCR V2
  • arxiv: https://arxiv.org/abs/1810.04002
  • github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Learning Region Features for Object Detection

  • intro: Peking University & MSRA
  • arxiv: https://arxiv.org/abs/1803.07066

Object Detection for Comics using Manga109 Annotations

  • intro: University of Tokyo & National Institute of Informatics, Japan
  • arxiv: https://arxiv.org/abs/1803.08670

Task-Driven Super Resolution: Object Detection in Low-resolution Images

https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1804.00428
  • github: https://github.com/Hwang64/MLKP

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

  • intro: National University of Defense Technology
  • arxiv: https://arxiv.org/abs/1804.04606

DetNet: A Backbone network for Object Detection

  • intro: Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1804.06215

AdvDetPatch: Attacking Object Detectors with Adversarial Patches

https://arxiv.org/abs/1806.02299

Attacking Object Detectors via Imperceptible Patches on Background

https://arxiv.org/abs/1809.05966

Physical Adversarial Examples for Object Detectors

  • intro: WOOT 2018
  • arxiv: https://arxiv.org/abs/1807.07769

Object detection at 200 Frames Per Second

  • intro: United Technologies Research Center-Ireland
  • arxiv: https://arxiv.org/abs/1805.06361

Object Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic Images

  • intro: CVPR 2018 Deep Vision Workshop
  • arxiv: https://arxiv.org/abs/1805.11778

SNIPER: Efficient Multi-Scale Training

  • intro: University of Maryland
  • keywords: SNIPER (Scale Normalization for Image Pyramid with Efficient Resampling)
  • arxiv: https://arxiv.org/abs/1805.09300
  • github: https://github.com/mahyarnajibi/SNIPER

Soft Sampling for Robust Object Detection

https://arxiv.org/abs/1806.06986

MetaAnchor: Learning to Detect Objects with Customized Anchors

  • intro: Megvii Inc (Face++) & Fudan University
  • arxiv: https://arxiv.org/abs/1807.00980

Localization Recall Precision (LRP): A New Performance Metric for Object Detection

  • intro: ECCV 2018. Middle East Technical University
  • arxiv: https://arxiv.org/abs/1807.01696
  • github: https://github.com/cancam/LRP

Pooling Pyramid Network for Object Detection

  • intro: Google AI Perception
  • arxiv: https://arxiv.org/abs/1807.03284

Modeling Visual Context is Key to Augmenting Object Detection Datasets

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.07428

Acquisition of Localization Confidence for Accurate Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.11590
  • gihtub: https://github.com/vacancy/PreciseRoIPooling

CornerNet: Detecting Objects as Paired Keypoints

  • intro: ECCV 2018
  • keywords: IoU-Net, PreciseRoIPooling
  • arxiv: https://arxiv.org/abs/1808.01244
  • github: https://github.com/umich-vl/CornerNet

Unsupervised Hard Example Mining from Videos for Improved Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1808.04285

SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

https://arxiv.org/abs/1808.04974

A Survey of Modern Object Detection Literature using Deep Learning

https://arxiv.org/abs/1808.07256

Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

  • intro: BMVC 2018
  • arxiv: https://arxiv.org/abs/1807.11013
  • github: https://github.com/lyxok1/Tiny-DSOD

Deep Feature Pyramid Reconfiguration for Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1808.07993

MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection

  • intro: ICPR 2018
  • arxiv: https://arxiv.org/abs/1809.01791

Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks

https://arxiv.org/abs/1809.03193

Deep Learning for Generic Object Detection: A Survey

https://arxiv.org/abs/1809.02165

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples

  • intro: ICLR 2018
  • arxiv: https://github.com/alinlab/Confident_classifier

Fast and accurate object detection in high resolution 4K and 8K video using GPUs

  • intro: Best Paper Finalist at IEEE High Performance Extreme Computing Conference (HPEC) 2018
  • intro: Carnegie Mellon University
  • arxiv: https://arxiv.org/abs/1810.10551

Hybrid Knowledge Routed Modules for Large-scale Object Detection

  • intro: NIPS 2018
  • arxiv: https://arxiv.org/abs/1810.12681
  • github(official, PyTorch): https://github.com/chanyn/HKRM

BAN: Focusing on Boundary Context for Object Detection

https://arxiv.org/abs/1811.05243

R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy

  • arxiv: https://arxiv.org/abs/1811.07126
  • github: https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow

DeRPN: Taking a further step toward more general object detection

  • intro: AAAI 2019
  • intro: South China University of Technology
  • ariv: https://arxiv.org/abs/1811.06700
  • github: https://github.com/HCIILAB/DeRPN

Fast Efficient Object Detection Using Selective Attention

https://arxiv.org/abs/1811.07502

Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects

https://arxiv.org/abs/1811.10862

Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects

https://arxiv.org/abs/1811.12152

Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection

https://arxiv.org/abs/1811.11318

Transferable Adversarial Attacks for Image and Video Object Detection

https://arxiv.org/abs/1811.12641

Anchor Box Optimization for Object Detection

  • intro: University of Illinois at Urbana-Champaign & Microsoft Research
  • arxiv: https://arxiv.org/abs/1812.00469

AutoFocus: Efficient Multi-Scale Inference

  • intro: University of Maryland
  • arxiv: https://arxiv.org/abs/1812.01600

Few-shot Object Detection via Feature Reweighting

https://arxiv.org/abs/1812.01866

Practical Adversarial Attack Against Object Detector

https://arxiv.org/abs/1812.10217

Scale-Aware Trident Networks for Object Detection

  • intro: University of Chinese Academy of Sciences & TuSimple
  • arxiv: https://arxiv.org/abs/1901.01892
  • github: https://github.com/TuSimple/simpledet

Region Proposal by Guided Anchoring

  • intro: CVPR 2019
  • intro: CUHK - SenseTime Joint Lab & Amazon Rekognition & Nanyang Technological University
  • arxiv: https://arxiv.org/abs/1901.03278

Bottom-up Object Detection by Grouping Extreme and Center Points

  • keywords: ExtremeNet
  • arxiv: https://arxiv.org/abs/1901.08043
  • github: https://github.com/xingyizhou/ExtremeNet

Bag of Freebies for Training Object Detection Neural Networks

  • intro: Amazon Web Services
  • arxiv: https://arxiv.org/abs/1902.04103

Augmentation for small object detection

https://arxiv.org/abs/1902.07296

Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1902.09630

SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition

  • intro: TuSimple
  • arxiv: https://arxiv.org/abs/1903.05831
  • github: https://github.com/tusimple/simpledet

BayesOD: A Bayesian Approach for Uncertainty Estimation in Deep Object Detectors

  • intro: University of Toronto
  • arxiv: https://arxiv.org/abs/1903.03838

DetNAS: Neural Architecture Search on Object Detection

  • intro: Chinese Academy of Sciences & Megvii Inc
  • arxiv: https://arxiv.org/abs/1903.10979

ThunderNet: Towards Real-time Generic Object Detection

https://arxiv.org/abs/1903.11752

Feature Intertwiner for Object Detection

  • intro: ICLR 2019
  • intro: CUHK & SenseTime & The University of Sydney
  • arxiv: https://arxiv.org/abs/1903.11851

Improving Object Detection with Inverted Attention

https://arxiv.org/abs/1903.12255

What Object Should I Use? - Task Driven Object Detection

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1904.03000

Towards Universal Object Detection by Domain Attention

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1904.04402

Prime Sample Attention in Object Detection

https://arxiv.org/abs/1904.04821

BAOD: Budget-Aware Object Detection

https://arxiv.org/abs/1904.05443

An Analysis of Pre-Training on Object Detection

  • intro: University of Maryland
  • arxiv: https://arxiv.org/abs/1904.05871

DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors

  • intro: Baidu Inc.
  • arxiv: https://arxiv.org/abs/1904.06883

NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

  • intro: CVPR 2019
  • intro: Google Brain
  • arxiv: https://arxiv.org/abs/1904.07392

Objects as Points

img

  • intro: Object detection, 3D detection, and pose estimation using center point detection
  • arxiv: https://arxiv.org/abs/1904.07850
  • github: https://github.com/xingyizhou/CenterNet

MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach

  • intro: ICCV 2021
  • intro: ZF Friedrichshafen AG, Artificial Intelligence Lab
  • arxiv: https://arxiv.org/abs/2108.05060

CenterNet: Object Detection with Keypoint Triplets

CenterNet: Keypoint Triplets for Object Detection

  • arxiv: https://arxiv.org/abs/1904.08189
  • github: https://github.com/Duankaiwen/CenterNet

CornerNet-Lite: Efficient Keypoint Based Object Detection

  • intro: Princeton University
  • arxiv: https://arxiv.org/abs/1904.08900
  • github: https://github.com/princeton-vl/CornerNet-Lite

CenterNet++ for Object Detection

  • arxiv: https://arxiv.org/abs/2204.08394
  • github; https://github.com/Duankaiwen/PyCenterNet

Automated Focal Loss for Image based Object Detection

https://arxiv.org/abs/1904.09048

Exploring Object Relation in Mean Teacher for Cross-Domain Detection

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1904.11245

An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection

  • intro: CVPR 2019 CEFRL Workshop
  • arxiv: https://arxiv.org/abs/1904.09730

RepPoints: Point Set Representation for Object Detection

  • intro: ICCV 2019
  • intro: Peking University & Tsinghua University & Microsoft Research Asia
  • arxiv: https://arxiv.org/abs/1904.11490
  • github: https://github.com/microsoft/RepPoints

Dense RepPoints: Representing Visual Objects with Dense Point Sets

  • intro: Peking University & CUHK & Zhejiang University & Shanghai Jiao Tong University & University of Toronto & MSRA
  • arxiv: https://arxiv.org/abs/1912.11473
  • github(official, mmdetection): https://github.com/justimyhxu/Dense-RepPoints

RepPoints V2: Verification Meets Regression for Object Detection

  • intro: Microsoft Research Asia & Peking University
  • arxiv: https://arxiv.org/abs/2007.08508
  • github(official, mmdetection): https://github.com/Scalsol/RepPointsV2

Object Detection in 20 Years: A Survey

https://arxiv.org/abs/1905.05055

Light-Weight RetinaNet for Object Detection

https://arxiv.org/abs/1905.10011

Learning Data Augmentation Strategies for Object Detection

  • intro: Google Research, Brain Team
  • arxiv: https://arxiv.org/abs/1906.11172
  • github: https://github.com/tensorflow/tpu/tree/master/models/official/detection

Towards Adversarially Robust Object Detection

  • intro: ICCV 2019
  • intro: Baidu Research, Sunnyvale USA
  • arxiv: https://arxiv.org/abs/1907.10310

Multi-adversarial Faster-RCNN for Unrestricted Object Detection

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1907.10343

Object as Distribution

  • intro: NeurIPS 2019
  • intro: MIT
  • arxiv: https://arxiv.org/abs/1907.12929

Detecting 11K Classes: Large Scale Object Detection without Fine-Grained Bounding Boxes

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1908.05217

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

  • arxiv: https://arxiv.org/abs/1908.05612
  • github: https://github.com/Thinklab-SJTU/R3Det_Tensorflow

SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing

  • project page: https://yangxue0827.github.io/SCRDet++.html
  • arxiv: https://arxiv.org/abs/2004.13316

Relation Distillation Networks for Video Object Detection

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1908.09511

Imbalance Problems in Object Detection: A Review

  • arxiv: https://arxiv.org/abs/1909.00169
  • github: https://github.com/kemaloksuz/ObjectDetectionImbalance

FreeAnchor: Learning to Match Anchors for Visual Object Detection

  • intro: NeurIPS 2019
  • arxiv: https://arxiv.org/abs/1909.02466

Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection

https://arxiv.org/abs/1909.02293

Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection

  • intro: ICCV 2019 oral
  • arxiv: https://arxiv.org/abs/1909.00597

CBNet: A Novel Composite Backbone Network Architecture for Object Detection

  • intro: AAAI 2020
  • keywords: Composite Backbone Network (CBNet)
  • arxiv: https://arxiv.org/abs/1909.03625
  • paper: https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuY.1833.pdf
  • github(Caffe2): https://github.com/PKUbahuangliuhe/CBNet
  • github(mmdetection): https://github.com/VDIGPKU/CBNet

CBNetV2: A Composite Backbone Network Architecture for Object Detection

  • arxiv: https://arxiv.org/abs/2107.00420
  • github: https://github.com/VDIGPKU/CBNetV2

A System-Level Solution for Low-Power Object Detection

  • intro: ICCV 2019 Low-Power Computer Vision Workshop
  • arxiv: https://arxiv.org/abs/1909.10964

Anchor Loss: Modulating Loss Scale based on Prediction Difficulty

  • intro: ICCV 2019 oral
  • arxiv: https://arxiv.org/abs/1909.11155
  • github(Pytorch): https://github.com/slryou41/AnchorLoss

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

  • intro: AAAI 2020
  • arxiv: https://arxiv.org/abs/1911.08287
  • github: https://github.com/Zzh-tju/DIoU
  • github: https://github.com/Zzh-tju/CIoU
  • github: https://github.com/Zzh-tju/DIoU-darknet

Curriculum Self-Paced Learning for Cross-Domain Object Detection

https://arxiv.org/abs/1911.06849

Multiple Anchor Learning for Visual Object Detection

https://arxiv.org/abs/1912.02252

MnasFPN: Learning Latency-aware Pyramid Architecture for Object Detection on Mobile Devices

  • intro: Google AI & Google Brain
  • arxiv: https://arxiv.org/abs/1912.01106

AugFPN: Improving Multi-scale Feature Learning for Object Detection

  • intro: CVPR 2020
  • intro: CASIA & Horizon Robotics
  • arxiv: https://arxiv.org/abs/1912.05384
  • github(official, mmdetection): https://github.com/Gus-Guo/AugFPN

Object Detection as a Positive-Unlabeled Problem

https://arxiv.org/abs/2002.04672

Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN

  • intro: AAAI 2020
  • intro: Huawei Noah’s Ark Lab & South China University of Technology & Sun Yat-Sen University
  • arxiv: https://arxiv.org/abs/2002.07417

BiDet: An Efficient Binarized Object Detector

  • intro: CVPR 2020
  • arxiv: https://arxiv.org/abs/2003.03961
  • github: https://github.com/ZiweiWangTHU/BiDet

Revisiting the Sibling Head in Object Detector

  • intro: CVPR 2020 & Method of Champion of OpenImage Challenge 2019, detection track
  • intro: SenseTime X-Lab & CUHK
  • keywords: task-aware spatial disentanglement (TSD)
  • arxiv: https://arxiv.org/abs/2003.07540
  • github: https://github.com/Sense-X/TSD

Extended Feature Pyramid Network for Small Object Detection

https://arxiv.org/abs/2003.07021

SaccadeNet: A Fast and Accurate Object Detector

  • intro: University of Maryland & Wormpex AI Research
  • arxiv: https://arxiv.org/abs/2003.12125

Scale-Equalizing Pyramid Convolution for Object Detection

  • intro: CVPR 2020
  • intro: SenseTime Research
  • arxiv: https://arxiv.org/abs/2005.03101
  • github: https://github.com/jshilong/SEPC

Dynamic Refinement Network for Oriented and Densely Packed Object Detection

  • intro: CVPR 2020 oral
  • keywords: SKU110K-R
  • arxiv: https://arxiv.org/abs/2005.09973
  • github: https://github.com/Anymake/DRN_CVPR2020

Robust Object Detection under Occlusion with Context-Aware CompositionalNets

  • intro: CVPR 2020
  • intro: Johns Hopkins University
  • arxiv: https://arxiv.org/abs/2005.11643

DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution

  • intro: Johns Hopkins University & Google Research
  • intro: COCO test-dev 54.7% box AP
  • arxiv: https://arxiv.org/abs/2006.02334
  • github(official, mmdetection): https://github.com/joe-siyuan-qiao/DetectoRS

Learning a Unified Sample Weighting Network for Object Detection

  • intro: CVPR 2020
  • arxiv: https://arxiv.org/abs/2006.06568
  • github: https://github.com/caiqi/sample-weighting-network

2nd Place Solution for Waymo Open Dataset Challenge – 2D Object Detection

  • intro: Horizon Robotics Inc.
  • arxiv: https://arxiv.org/abs/2006.15507

Domain Adaptive Object Detection via Asymmetric Tri-way Faster-RCNN

  • intro: ECCV 2020
  • arxiv: https://arxiv.org/abs/2007.01571

AQD: Towards Accurate Quantized Object Detection

  • intro: South China University of Technology & University of Adelaide & Monash University
  • arxiv: https://arxiv.org/abs/2007.06919
  • github: https://github.com/blueardour/model-quantization

Probabilistic Anchor Assignment with IoU Prediction for Object Detection

  • intro: ECCV 2020
  • arxiv: https://arxiv.org/abs/2007.08103
  • github: https://github.com/kkhoot/PAA

BorderDet: Border Feature for Dense Object Detection

  • intro: ECCV 2020 oral
  • arxiv: https://arxiv.org/abs/2007.11056
  • github: https://github.com/Megvii-BaseDetection/BorderDet

Quantum-soft QUBO Suppression for Accurate Object Detection

  • intro: ECCV 2020
  • arxiv: https://arxiv.org/abs/2007.13992

VarifocalNet: An IoU-aware Dense Object Detector

  • intro: Queensland University of Technology & University of Queensland
  • arxiv: https://arxiv.org/abs/2008.13367
  • github: https://github.com/hyz-xmaster/VarifocalNet

The 1st Tiny Object Detection Challenge:Methods and Results

  • intro: ECCV2020 Workshop on Real-world Computer Vision from Inputs with Limited Quality (RLQ) and Tiny Object Detection Challenge
  • arxiv: https://arxiv.org/abs/2009.07506

MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection

  • intro: ECCV 2020
  • intro: SenseTime & CUHK
  • arxiv: https://arxiv.org/abs/2009.11528

SEA: Bridging the Gap Between One- and Two-stage Detector Distillation via SEmantic-aware Alignment

  • intro: The Chinese University of Hong Kong & SmartMore
  • arxiv: https://arxiv.org/abs/2203.00862

A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection

  • intro: NeurIPS 2020 spotlight
  • intro: Middle East Technical University
  • keywords: average Localization-Recall-Precision (aLRP)
  • arxiv: https://arxiv.org/abs/2009.13592
  • github(official, Pytorch): https://github.com/kemaloksuz/aLRPLoss

Effective Fusion Factor in FPN for Tiny Object Detection

  • intro: WACV 2021
  • arxiv: https://arxiv.org/abs/2011.02298

Bi-Dimensional Feature Alignment for Cross-Domain Object Detection

  • intro: ECCV 2020 TASK-CV Workshop
  • arxiv: https://arxiv.org/abs/2011.07205

Rethinking Transformer-based Set Prediction for Object Detection

  • intro: Carnegie Mellon University
  • arxiv: https://arxiv.org/abs/2011.10881

Unsupervised Object Detection with LiDAR Clues

  • intro: SenseTime & USTC & CASIA & CAS
  • arxiv: https://arxiv.org/abs/2011.12953

Self-EMD: Self-Supervised Object Detection without ImageNet

  • intro: MEGVII Technology
  • arxiv: https://arxiv.org/abs/2011.13677

End-to-End Object Detection with Fully Convolutional Network

  • intro: Megvii Technology & Xi’an Jiaotong University
  • keywords: Prediction-aware One- To-One (POTO) label assignment, 3D Max Filtering (3DMF)
  • arxiv: https://arxiv.org/abs/2012.03544
  • github: https://github.com/Megvii-BaseDetection/DeFCN

Fine-Grained Dynamic Head for Object Detection

  • intro: NeurIPS 2020
  • arxiv: https://arxiv.org/abs/2012.03519
  • github: https://github.com/StevenGrove/DynamicHead

Focal and Efficient IOU Loss for Accurate Bounding Box Regression

  • intro: South China University of Technology & 2Horizon Robotics & Chinese Academy of Sciences
  • arxiv: https://arxiv.org/abs/2101.08158

Scale Normalized Image Pyramids with AutoFocus for Object Detection

  • intro: T-PAMI 2021
  • arxiv: https://arxiv.org/abs/2102.05646
  • github: https://github.com/mahyarnajibi/SNIPER

DetCo: Unsupervised Contrastive Learning for Object Detection

  • intro: The University of Hong Kong & Huawei Noah’s Ark Lab & Wuhan University & Nanjing University & Chinese University of Hong Kong
  • arxiv: https://arxiv.org/abs/2102.04803
  • github: https://github.com/xieenze/DetCo
  • github: https://github.com/open-mmlab/OpenSelfSup

RMOPP: Robust Multi-Objective Post-Processing for Effective Object Detection

https://arxiv.org/abs/2102.04582

Instance Localization for Self-supervised Detection Pretraining

  • intro: Chinese University of Hong Kong & Microsoft Research Asia
  • arxiv: https://arxiv.org/abs/2102.08318

Localization Distillation for Object Detection

  • arxiv: https://arxiv.org/abs/2102.12252
  • github: https://github.com/HikariTJU/LD

General Instance Distillation for Object Detection

  • intro: CVPR 2021
  • arxiv: https://arxiv.org/abs/2103.02340

Towards Open World Object Detection

  • intro: CVPR 2021 oral
  • arxiv: https://arxiv.org/abs/2103.02603
  • github: https://github.com/JosephKJ/OWOD

Data Augmentation for Object Detection via Differentiable Neural Rendering

  • arxiv: https://arxiv.org/abs/2103.02852
  • github: https://github.com/Guanghan/DANR

Revisiting the Loss Weight Adjustment in Object Detection

  • intro: University of Science and Technology of China & University of Michigan
  • arxiv: https://arxiv.org/abs/2103.09488
  • github: https://github.com/ywx-hub/ALWA

You Only Look One-level Feature

  • intro: CVPR 2021
  • arxiv: https://arxiv.org/abs/2103.09460
  • github: https://github.com/megvii-model/YOLOF

Optimization for Oriented Object Detection via Representation Invariance Loss

  • arxiv: https://arxiv.org/abs/2103.11636
  • github: https://github.com/ming71/RIDet

Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

  • intro: AAAI 2021
  • arxiv: https://arxiv.org/abs/2012.04150
  • github: https://github.com/ming71/DAL

Control Distance IoU and Control Distance IoU Loss Function for Better Bounding Box Regression

https://arxiv.org/abs/2103.11696

OTA: Optimal Transport Assignment for Object Detection

  • intro: CVPR 2021
  • arxiv: https://arxiv.org/abs/2103.14259
  • github: https://github.com/Megvii-BaseDetection/OTA

Distilling Object Detectors via Decoupled Features

  • intro: CVPR 2021
  • arxiv: https://arxiv.org/abs/2103.14475
  • github: https://github.com/ggjy/DeFeat.pytorch

Distilling a Powerful Student Model via Online Knowledge Distillation

  • arxiv: https://arxiv.org/abs/2103.14473
  • github: https://github.com/SJLeo/FFSD

IQDet: Instance-wise Quality Distribution Sampling for Object Detection

  • intro: CVPR 2021
  • intro: Megvii Technology
  • arxiv: https://arxiv.org/abs/2104.06936

You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection

  • intro: Huazhong University of Science & Technology, Horizon Robotics
  • arxiv: https://arxiv.org/abs/2106.00666
  • github: https://github.com/hustvl/YOLOS

Augmenting Anchors by the Detector Itself

https://arxiv.org/abs/2105.14086

Rethinking Training from Scratch for Object Detection

  • intro: Zhejiang University
  • arxiv: https://arxiv.org/abs/2106.03112

Dynamic Head: Unifying Object Detection Heads with Attentions

  • intro: CVPR 2021
  • intro: Microsoft
  • arxiv: https://arxiv.org/abs/2106.08322
  • github: https://github.com/microsoft/DynamicHead

Disentangle Your Dense Object Detector

  • intro: ACM MM 2021
  • arxiv: https://arxiv.org/abs/2107.02963
  • github: https://github.com/zehuichen123/DDOD

Improving Object Detection by Label Assignment Distillation

  • arxiv: https://arxiv.org/abs/2108.10520
  • github: https://github.com/cybercore-co-ltd/CoLAD_paper

Progressive Hard-case Mining across Pyramid Levels in Object Detection

  • intro: Baidu Inc.
  • arxiv: https://arxiv.org/abs/2109.07217
  • github: https://github.com/zimoqingfeng/UMOP

Multi-Scale Aligned Distillation for Low-Resolution Detection

  • intro: CVPR 2021
  • intro: The Chinese University of Hong Kong & Adobe Research & SmartMore
  • arxiv: https://arxiv.org/abs/2109.06875
  • github: https://github.com/dvlab-research/MSAD

Pix2seq: A Language Modeling Framework for Object Detection

  • intro: Google Research, Brain Team
  • arxiv: https://arxiv.org/abs/2109.10852

Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity

  • intro: NeurIPS 2021
  • intro: Shanghai Jiao Tong University
  • arxiv: https://arxiv.org/abs/2110.14191
  • github: https://github.com/bcmi/TraMaS-Weak-Shot-Object-Detection

Bootstrap Your Object Detector via Mixed Training

  • intro: NeurIPS 2021 Spotlight
  • intro: Huazhong University of Science and Technology & Xi’an Jiaotong University & Microsoft Research Asia
  • keywords: MixTraining
  • arxiv: https://arxiv.org/abs/2111.03056
  • github: https://github.com/MendelXu/MixTraining

PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices

  • intro: Baidu Inc.
  • arxiv: https://arxiv.org/abs/2111.00902
  • github: https://github.com/PaddlePaddle/PaddleDetection

Toward Minimal Misalignment at Minimal Cost in One-Stage and Anchor-Free Object Detection

https://arxiv.org/abs/2112.08902

GiraffeDet: A Heavy-Neck Paradigm for Object Detection

https://arxiv.org/abs/2202.04256

A Dual Weighting Label Assignment Scheme for Object Detection

  • intro: CVPR 2022
  • arxiv: https://arxiv.org/abs/2203.09730
  • github: https://github.com/strongwolf/DW

QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection

  • intro: CVPR 2022
  • arxiv: https://arxiv.org/abs/2103.09136
  • github: https://github.com/ChenhongyiYang/QueryDet-PyTorch

Two-Stage Object Detection

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

  • intro: R-CNN
  • arxiv: http://arxiv.org/abs/1311.2524
  • supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
  • slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
  • slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
  • github: https://github.com/rbgirshick/rcnn
  • notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
  • caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482

Fast R-CNN

Fast R-CNN

  • arxiv: http://arxiv.org/abs/1504.08083
  • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
  • github: https://github.com/rbgirshick/fast-rcnn
  • github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
  • webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
  • notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
  • notes: http://blog.csdn.net/linj_m/article/details/48930179
  • github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
  • github: https://github.com/mahyarnajibi/fast-rcnn-torch
  • github: https://github.com/apple2373/chainer-simple-fast-rnn
  • github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03414
  • paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
  • github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

  • intro: NIPS 2015
  • arxiv: http://arxiv.org/abs/1506.01497
  • gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
  • slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
  • github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
  • github: https://github.com/rbgirshick/py-faster-rcnn
  • github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
  • github: https://github.com//jwyang/faster-rcnn.pytorch
  • github: https://github.com/mitmul/chainer-faster-rcnn
  • github: https://github.com/andreaskoepf/faster-rcnn.torch
  • github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
  • github: https://github.com/smallcorgi/Faster-RCNN_TF
  • github: https://github.com/CharlesShang/TFFRCNN
  • github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
  • github: https://github.com/yhenon/keras-frcnn
  • github: https://github.com/Eniac-Xie/faster-rcnn-resnet
  • github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

R-CNN minus R

  • intro: BMVC 2015
  • arxiv: http://arxiv.org/abs/1506.06981

Faster R-CNN in MXNet with distributed implementation and data parallelization

  • github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

  • intro: ECCV 2016. Carnegie Mellon University
  • paper: http://abhinavsh.info/context_priming_feedback.pdf
  • poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling

  • intro: Technical Report, 3 pages. CMU
  • arxiv: https://arxiv.org/abs/1702.02138
  • github: https://github.com/endernewton/tf-faster-rcnn

Interpretable R-CNN

  • intro: North Carolina State University & Alibaba
  • keywords: AND-OR Graph (AOG)
  • arxiv: https://arxiv.org/abs/1711.05226

Light-Head R-CNN: In Defense of Two-Stage Object Detector

  • intro: Tsinghua University & Megvii Inc
  • arxiv: https://arxiv.org/abs/1711.07264
  • github(official, Tensorflow): https://github.com/zengarden/light_head_rcnn
  • github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py#L784

Cascade R-CNN: Delving into High Quality Object Detection

  • intro: CVPR 2018. UC San Diego
  • arxiv: https://arxiv.org/abs/1712.00726
  • github(Caffe, official): https://github.com/zhaoweicai/cascade-rcnn

Cascade R-CNN: High Quality Object Detection and Instance Segmentation

-arxiv: https://arxiv.org/abs/1906.09756

  • github(Caffe, official): https://github.com/zhaoweicai/cascade-rcnn
  • github(official): https://github.com/zhaoweicai/Detectron-Cascade-RCNN

Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution

  • intro: NeurIPS 2019 spotlight
  • arxiv: https://arxiv.org/abs/1909.06720
  • github: https://github.com/thangvubk/Cascade-RPN

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

https://arxiv.org/abs/1706.10217

Domain Adaptive Faster R-CNN for Object Detection in the Wild

  • intro: CVPR 2018. ETH Zurich & ESAT/PSI
  • arxiv: https://arxiv.org/abs/1803.03243
  • github(official. Caffe): https://github.com/yuhuayc/da-faster-rcnn

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

https://arxiv.org/abs/1804.05810

Auto-Context R-CNN

  • intro: Rejected by ECCV18
  • arxiv: https://arxiv.org/abs/1807.02842

Grid R-CNN

  • intro: CVPR 2019
  • intro: SenseTime
  • arxiv: https://arxiv.org/abs/1811.12030

Grid R-CNN Plus: Faster and Better

  • intro: SenseTime Research & CUHK & Beihang University
  • arxiv: https://arxiv.org/abs/1906.05688
  • github: https://github.com/STVIR/Grid-R-CNN

Few-shot Adaptive Faster R-CNN

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1903.09372

Libra R-CNN: Towards Balanced Learning for Object Detection

  • intro: CVPR 2019
  • arxiv: https://arxiv.org/abs/1904.02701

Rethinking Classification and Localization in R-CNN

  • intro: Northeastern University & Microsoft
  • arxiv: https://arxiv.org/abs/1904.06493

Reprojection R-CNN: A Fast and Accurate Object Detector for 360° Images

  • intro: Peking University
  • arxiv: https://arxiv.org/abs/1907.11830

Rethinking Classification and Localization for Cascade R-CNN

  • intro: BMVC 2019
  • arxiv: https://arxiv.org/abs/1907.11914

IoU-uniform R-CNN: Breaking Through the Limitations of RPN

  • arxiv: https://arxiv.org/abs/1912.05190
  • github(mmdetection): https://github.com/zl1994/IoU-Uniform-R-CNN

Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training

  • arxiv: https://arxiv.org/abs/2004.06002
  • github: https://github.com/hkzhang95/DynamicRCNN

Delving into the Imbalance of Positive Proposals in Two-stage Object Detection

  • intro: Waseda University & Tencent AI Lab & Nanjing University of Science and Technology
  • arxiv: https://arxiv.org/abs/2005.11472

Hierarchical Context Embedding for Region-based Object Detection

  • intro: ECCV 2020
  • intro: Nanjing University & Megvii Technology
  • arxiv: https://arxiv.org/abs/2008.01338

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

  • intro: CVPR 2021
  • intro: The University of Hong Kong & Tongji University & ByteDance AI Lab 4University of California
  • arxiv: https://arxiv.org/abs/2011.12450
  • github: https://github.com/PeizeSun/SparseR-CNN

Dynamic Sparse R-CNN

  • intro: CVPR 2022
  • arxiv: https://arxiv.org/abs/2205.02101

Featurized Query R-CNN

  • intro: Huazhong University of Science & Technology & Horizon Robotics
  • arxiv: https://arxiv.org/abs/2206.06258
  • github: https://github.com/hustvl/Featurized-QueryRCNN

Augmenting Proposals by the Detector Itself

  • intro: Tsinghua University & Alibaba Group
  • arxiv: https://arxiv.org/abs/2101.11789

Probabilistic two-stage detection

  • intro: UT Austin & Intel Labs
  • arxiv: https://arxiv.org/abs/2103.07461
  • github: https://github.com/xingyizhou/CenterNet2

Single-Shot Object Detection

YOLO

You Only Look Once: Unified, Real-Time Object Detection

img

  • arxiv: http://arxiv.org/abs/1506.02640
  • code: http://pjreddie.com/darknet/yolo/
  • github: https://github.com/pjreddie/darknet
  • blog: https://pjreddie.com/publications/yolo/
  • slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
  • reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
  • github: https://github.com/gliese581gg/YOLO_tensorflow
  • github: https://github.com/xingwangsfu/caffe-yolo
  • github: https://github.com/frankzhangrui/Darknet-Yolo
  • github: https://github.com/BriSkyHekun/py-darknet-yolo
  • github: https://github.com/tommy-qichang/yolo.torch
  • github: https://github.com/frischzenger/yolo-windows
  • github: https://github.com/AlexeyAB/yolo-windows
  • github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

  • blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
  • github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

img

  • intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
  • blog: http://guanghan.info/blog/en/my-works/train-yolo/
  • github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

  • intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
  • blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
  • github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

  • intro: Real-time object detection on Android using the YOLO network with TensorFlow
  • github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

  • blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
  • github:https://github.com/r4ghu/iOS-CoreML-Yolo

YOLOv2

YOLO9000: Better, Faster, Stronger

  • arxiv: https://arxiv.org/abs/1612.08242
  • code: http://pjreddie.com/yolo9000/
  • github(Chainer): https://github.com/leetenki/YOLOv2
  • github(Keras): https://github.com/allanzelener/YAD2K
  • github(PyTorch): https://github.com/longcw/yolo2-pytorch
  • github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
  • github(Windows): https://github.com/AlexeyAB/darknet
  • github: https://github.com/choasUp/caffe-yolo9000
  • github: https://github.com/philipperemy/yolo-9000

darknet_scripts

  • intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
  • github: https://github.com/Jumabek/darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

  • github: https://github.com/AlexeyAB/Yolo_mark

LightNet: Bringing pjreddie’s DarkNet out of the shadows

https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

  • intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
  • github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI

YOLOv3

YOLOv3: An Incremental Improvement

  • project page: https://pjreddie.com/darknet/yolo/
  • paper: https://pjreddie.com/media/files/papers/YOLOv3.pdf
  • arxiv: https://arxiv.org/abs/1804.02767
  • githb: https://github.com/DeNA/PyTorch_YOLOv3
  • github: https://github.com/eriklindernoren/PyTorch-YOLOv3

Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving

https://arxiv.org/abs/1904.04620

YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

https://arxiv.org/abs/1811.05588

Spiking-YOLO: Spiking Neural Network for Real-time Object Detection

https://arxiv.org/abs/1903.06530

YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection

https://arxiv.org/abs/1910.01271

REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs

https://arxiv.org/abs/1909.13396

Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3

  • intro: TPAMI
  • arxiv: https://arxiv.org/abs/2005.13243
  • gitlab: https://gitlab.com/irafm-ai/poly-yolo

YOLOv4

YOLOv4: Optimal Speed and Accuracy of Object Detection

  • keywords: Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT), Mish-activation
  • arxiv: https://arxiv.org/abs/2004.10934
  • github: https://github.com/AlexeyAB/darknet
  • github: https://github.com/WongKinYiu/PyTorch_YOLOv4

YOLOX: Exceeding YOLO Series in 2021

  • intro: Megvii Technology
  • arxiv: https://arxiv.org/abs/2107.08430
  • github: https://github.com/Megvii-BaseDetection/YOLOX

PP-YOLO: An Effective and Efficient Implementation of Object Detector

  • intro: Baidu Inc.
  • arxiv: https://arxiv.org/abs/2007.12099
  • github: https://github.com/PaddlePaddle/PaddleDetection

YOLOv7

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

  • arxiv: https://arxiv.org/abs/2207.02696
  • github: https://github.com/WongKinYiu/yolov7

Real-time Object Detection for Streaming Perception

  • intro: CVPR 2022 oral
  • arxiv: https://arxiv.org/abs/2203.12338
  • github: https://github.com/yancie-yjr/StreamYOLO

SSD

SSD: Single Shot MultiBox Detector

img

  • intro: ECCV 2016 Oral
  • arxiv: http://arxiv.org/abs/1512.02325
  • paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
  • slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf
  • github(Official): https://github.com/weiliu89/caffe/tree/ssd
  • video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
  • github: https://github.com/zhreshold/mxnet-ssd
  • github: https://github.com/zhreshold/mxnet-ssd.cpp
  • github: https://github.com/rykov8/ssd_keras
  • github: https://github.com/balancap/SSD-Tensorflow
  • github: https://github.com/amdegroot/ssd.pytorch
  • github(Caffe): https://github.com/chuanqi305/MobileNet-SSD

What’s the diffience in performance between this new code you pushed and the previous code? #327

https://github.com/weiliu89/caffe/issues/327

DSSD : Deconvolutional Single Shot Detector

  • intro: UNC Chapel Hill & Amazon Inc
  • arxiv: https://arxiv.org/abs/1701.06659
  • github: https://github.com/chengyangfu/caffe/tree/dssd
  • github: https://github.com/MTCloudVision/mxnet-dssd
  • demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Enhancement of SSD by concatenating feature maps for object detection

  • intro: rainbow SSD (R-SSD)
  • arxiv: https://arxiv.org/abs/1705.09587

Context-aware Single-Shot Detector

  • keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
  • arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

  • intro: WeaveNet
  • keywords: fuse multi-scale information
  • arxiv: https://arxiv.org/abs/1712.03149

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

  • keywords: ESSD
  • arxiv: https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

https://arxiv.org/abs/1802.06488

MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects

  • intro: Zhengzhou University
  • arxiv: https://arxiv.org/abs/1805.07009

Accurate Single Stage Detector Using Recurrent Rolling Convolution

  • intro: CVPR 2017. SenseTime
  • keywords: Recurrent Rolling Convolution (RRC)
  • arxiv: https://arxiv.org/abs/1704.05776
  • github: https://github.com/xiaohaoChen/rrc_detection

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

RetinaNet

Focal Loss for Dense Object Detection

  • intro: ICCV 2017 Best student paper award. Facebook AI Research
  • keywords: RetinaNet
  • arxiv: https://arxiv.org/abs/1708.02002

Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection

  • intro: BMVC 2019
  • keywords: Cas-RetinaNet, Feature Consistency Module
  • arxiv: https://arxiv.org/abs/1907.06881

Focal Loss Dense Detector for Vehicle Surveillance

https://arxiv.org/abs/1803.01114

Single-Shot Refinement Neural Network for Object Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1711.06897
  • github: https://github.com/sfzhang15/RefineDet
  • github: https://github.com/MTCloudVision/RefineDet-Mxnet

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

  • intro: Singapore Management University & Zhejiang University
  • arxiv: https://arxiv.org/abs/1803.08208

Dual Refinement Network for Single-Shot Object Detection

https://arxiv.org/abs/1807.08638

ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch

Gradient Harmonized Single-stage Detector

  • intro: AAAI 2019 Oral
  • arxiv: https://arxiv.org/abs/1811.05181
  • gihtub(official): https://github.com/libuyu/GHM_Detection

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

  • intro: AAAI 2019
  • arxiv: https://arxiv.org/abs/1811.04533
  • github: https://github.com/qijiezhao/M2Det

Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector

  • intro: WACV 2019
  • arxiv: https://arxiv.org/abs/1811.08342

Consistent Optimization for Single-Shot Object Detection

  • arxiv: https://arxiv.org/abs/1901.06563
  • blog: https://zhuanlan.zhihu.com/p/55416312

A Single-shot Object Detector with Feature Aggragation and Enhancement

https://arxiv.org/abs/1902.02923

Towards Accurate One-Stage Object Detection with AP-Loss

  • intro: CVPR 2019
  • intro: Shanghai Jiao Tong University & Intel Labs & Malaysia Multimedia University & Tencent YouTu Lab & Peking University
  • keywords: Average-Precision loss (AP-loss)
  • arxiv: {https://arxiv.org/abs/1904.06373}(https://arxiv.org/abs/1904.06373)

AP-Loss for Accurate One-Stage Object Detection

  • intro: IEEE TPAMI
  • arxiv: https://arxiv.org/abs/2008.07294
  • github: https://github.com/cccorn/AP-loss

Searching Parameterized AP Loss for Object Detection

  • intro: NeurIPS 2021
  • intro: 1Tsinghua University & Zhejiang University & SenseTime Research & Shanghai Jiao Tong University & Beijing Academy of Artificial Intelligence
  • arxiv: https://arxiv.org/abs/2112.05138
  • github: https://github.com/fundamentalvision/Parameterized-AP-Loss

Efficient Featurized Image Pyramid Network for Single Shot Detector

  • intro: CVPR 2019
  • paper: http://openaccess.thecvf.com/content_CVPR_2019/papers/Pang_Efficient_Featurized_Image_Pyramid_Network_for_Single_Shot_Detector_CVPR_2019_paper.pdf
  • github: https://github.com/vaesl/LFIP

DR Loss: Improving Object Detection by Distributional Ranking

  • intro: Alibaba Group
  • arxiv: https://arxiv.org/abs/1907.10156

HAR-Net: Joint Learning of Hybrid Attention for Single-stage Object Detection

https://arxiv.org/abs/1904.11141

Propose-and-Attend Single Shot Detector

https://arxiv.org/abs/1907.12736

Revisiting Feature Alignment for One-stage Object Detection

  • intro: University of Chinese Academy of Sciences & TuSimple
  • keywords: AlignDet, RoIConv
  • arxiv: https://arxiv.org/abs/1908.01570

IoU-balanced Loss Functions for Single-stage Object Detection

  • intro: HUST
  • arxiv: https://arxiv.org/abs/1908.05641

PosNeg-Balanced Anchors with Aligned Features for Single-Shot Object Detection

  • intro: Chinese Academy of Sciences & University of Chinese Academy of Sciences
  • keywords: Anchor Promotion Module (APM), Feature Alignment Module (FAM)
  • arxiv: https://arxiv.org/abs/1908.03295

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

https://arxiv.org/abs/1908.05612

Hierarchical Shot Detector

  • intro: ICCV 2019
  • keywords: reg-offset-cls (ROC) module
  • paper: http://openaccess.thecvf.com/content_ICCV_2019/papers/Cao_Hierarchical_Shot_Detector_ICCV_2019_paper.pdf
  • github(official, Pytorch): https://github.com/JialeCao001/HSD

Learning from Noisy Anchors for One-stage Object Detection

https://arxiv.org/abs/1912.05086

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

  • intro: Nanjing University of Science and Technology & Momenta & Nanjing University & Microsoft Research & Tsinghua University
  • arxiv: https://arxiv.org/abs/2006.04388
  • github: https://github.com/implus/GFocal

Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection

  • intro: Nanjing University of Science and Technology & Momenta & Nanjing University & Tsinghua University
  • arxiv: https://arxiv.org/abs/2011.12885
  • github: https://github.com/implus/GFocalV2

Single-Shot Two-Pronged Detector with Rectified IoU Loss

  • intro: ACM MM 2020
  • arxiv: https://arxiv.org/abs/2008.03511

OneNet: Towards End-to-End One-Stage Object Detection

  • intro: The University of Hong Kong & ByteDance AI Lab
  • arxiv: https://arxiv.org/abs/2012.05780
  • github: https://github.com/PeizeSun/OneNet

TOOD: Task-aligned One-stage Object Detection

  • intro: ICCV 2021 Oral
  • intro: Intellifusion Inc. & Meituan Inc. & ByteDance Inc. & Malong LLC & Alibaba Group
  • arxiv: https://arxiv.org/abs/2108.07755
  • github: https://github.com/fcjian/TOOD

Rethinking the Aligned and Misaligned Features in One-stage Object Detection

https://arxiv.org/abs/2108.12176

Anchor-free

Feature Selective Anchor-Free Module for Single-Shot Object Detection

  • intro: CVPR 2019
  • keywords: feature selective anchor-free (FSAF) module
  • arxiv: https://arxiv.org/abs/1903.00621

FCOS: Fully Convolutional One-Stage Object Detection

  • intro: The University of Adelaide
  • keywords: anchor-free
  • arxiv: https://arxiv.org/abs/1904.01355
  • github: https://github.com/tianzhi0549/FCOS/

FoveaBox: Beyond Anchor-based Object Detector

  • intro: Tsinghua University & BNRist & ByteDance AI Lab & University of Pennsylvania
  • arxiv: https://arxiv.org/abs/1904.03797
  • github(official, mmdetection): https://github.com/taokong/FoveaBox

IMMVP: An Efficient Daytime and Nighttime On-Road Object Detector

https://arxiv.org/abs/1910.06573

EfficientDet: Scalable and Efficient Object Detection

  • intro: CVPR 2020
  • arxiv: https://arxiv.org/abs/1911.09070
  • github: https://github.com/google/automl/tree/master/efficientdet
  • github: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Domain Adaptation for Object Detection via Style Consistency

  • intro: BMVC 2019
  • arxiv: https://arxiv.org/abs/1911.10033

Soft Anchor-Point Object Detection

  • intro: ECCV 2020
  • intro: Carnegie Mellon University
  • keywords: Soft Anchor-Point Detector (SAPD)
  • arxiv: https://arxiv.org/abs/1911.12448

IPG-Net: Image Pyramid Guidance Network for Object Detection

https://arxiv.org/abs/1912.00632

Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection

  • arxiv: https://arxiv.org/abs/1912.02424
  • github: https://github.com/sfzhang15/ATSS

Localization Uncertainty Estimation for Anchor-Free Object Detection

  • keywords: Gaussian-FCOS
  • arxiv: https://arxiv.org/abs/2006.15607

Corner Proposal Network for Anchor-free, Two-stage Object Detection

  • intro: ECCV 2020
  • arxiv: https://arxiv.org/abs/2007.13816
  • github: https://github.com/Duankaiwen/CPNDet

Dive Deeper Into Box for Object Detection

  • intro: ECCV 2020
  • keywords: DDBNet, anchor free
  • arxiv: https://arxiv.org/abs/2007.14350

Corner Proposal Network for Anchor-free, Two-stage Object Detection

  • intro: ECCV 2020
  • arxiv: https://arxiv.org/abs/2007.13816
  • github: https://github.com/Duankaiwen/CPNDet

Reducing Label Noise in Anchor-Free Object Detection

  • intro: BMVC 2020
  • arxiv: https://arxiv.org/abs/2008.01167
  • github: https://github.com/nerminsamet/ppdet

Balance-Oriented Focal Loss with Linear Scheduling for Anchor Free Object Detection

https://arxiv.org/abs/2012.13763

PAFNet: An Efficient Anchor-Free Object Detector Guidance

  • intro: Baidu Inc.
  • github: https://arxiv.org/abs/2104.13534
  • arxiv: https://github.com/PaddlePaddle/PaddleDetection

Pseudo-IoU: Improving Label Assignment in Anchor-Free Object Detection

  • intro: CVPR 2021 Workshop
  • intro: UIUC & MIT-IBM Watson AI Lab & IBM T.J. Watson Research Center & NVIDIA & University of Oregon & Picsart AI Research (PAIR)
  • arxiv: https://arxiv.org/abs/2104.14082

ObjectBox: From Centers to Boxes for Anchor-Free Object Detection

  • intro: ECCV 2022 Oral
  • intro: Ingenuity Labs Research Institute & Queen’s University
  • arxiv: https://arxiv.org/abs/2207.06985
  • github: https://github.com/MohsenZand/ObjectBox

Transformers

End-to-End Object Detection with Transformers

  • intro: Facebook AI
  • keywords: DEtection TRansformer (DETR)
  • arxiv: https://arxiv.org/abs/2005.12872
  • github: https://github.com/facebookresearch/detr

Deformable DETR: Deformable Transformers for End-to-End Object Detection

  • intro: SenseTime Research & USTC & CUHK
  • arxiv: https://arxiv.org/abs/2010.04159
  • github: https://github.com/fundamentalvision/Deformable-DETR

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

  • intro: NeurIPS2020 Spotlight
  • intro: CAS & MSRA
  • arxiv: https://arxiv.org/abs/2010.15831
  • github:https://github.com/microsoft/RelationNet2

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

  • intro: South China University of Technology & Tencent Wechat AI
  • arxiv: https://arxiv.org/abs/2011.09094

Conditional DETR for Fast Training Convergence

  • intro: ICCV 2021
  • intro: University of Science and Technology of China & Peking University & Microsoft Research Asia
  • arxiv: https://arxiv.org/abs/2108.06152
  • github: https://github.com/Atten4Vis/ConditionalDETR

End-to-End Object Detection with Adaptive Clustering Transformer

  • intro: Peking University & The Chinese University of Hong Kong
  • arxiv: https://arxiv.org/abs/2011.09315

Toward Transformer-Based Object Detection

  • intro: Pinterest
  • keywords: ViT-FRCNN
  • arxiv: https://arxiv.org/abs/2012.09958

Efficient DETR: Improving End-to-End Object Detector with Dense Prior

  • intro: Megvii Technology
  • arxiv: https://arxiv.org/abs/2104.01318

Anchor DETR: Query Design for Transformer-Based Detector

  • intro: MEGVII Technology
  • arxiv: https://arxiv.org/abs/2109.07107
  • gihtub: https://github.com/megvii-model/AnchorDETR

DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

  • arxiv: https://arxiv.org/abs/2201.12329
  • github: https://github.com/SlongLiu/DAB-DETR

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection

  • arxiv: https://arxiv.org/abs/2203.03605
  • github: https://github.com/IDEACVR/DINO

Oriented Object Detection with Transformer

  • intro: University at Buffalo & Beihang University & Baidu Inc
  • arxiv: https://arxiv.org/abs/2106.03146

ViDT: An Efficient and Effective Fully Transformer-based Object Detector

  • intro: NAVER AI Lab & Google Research & University of California at Merced
  • arxiv: https://arxiv.org/abs/2110.03921
  • github: https://github.com/naver-ai/vidt

An Extendable, Efficient and Effective Transformer-based Object Detector

  • arxiv: https://arxiv.org/abs/2204.07962
  • github: https://github.com/naver-ai/vidt

Omni-DETR: Omni-Supervised Object Detection with Transformers

  • intro: CVPR 2022
  • arxiv: https://arxiv.org/abs/2203.16089

Accelerating DETR Convergence via Semantic-Aligned Matching

  • intro: CVPR 2022
  • arxiv: https://arxiv.org/abs/2203.06883
  • github: https://github.com/ZhangGongjie/SAM-DETR

AdaMixer: A Fast-Converging Query-Based Object Detector

  • intro: CVPR 2022 oral
  • intro: Nanjing University, MYbank Ant Group
  • arxiv: https://arxiv.org/abs/2203.16507
  • github: https://github.com/MCG-NJU/AdaMixer

Exploring Plain Vision Transformer Backbones for Object Detection

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/2203.16527

Efficient Decoder-free Object Detection with Transformers

  • intro: Tencent Youtu Lab & Zhejiang University
  • arxiv: https://arxiv.org/abs/2206.06829
  • github: https://github.com/Pealing/DFFT

Non-Maximum Suppression (NMS)

End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression

  • intro: CVPR 2015
  • arxiv: http://arxiv.org/abs/1411.5309
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

A convnet for non-maximum suppression

  • arxiv: http://arxiv.org/abs/1511.06437

Improving Object Detection With One Line of Code

Soft-NMS – Improving Object Detection With One Line of Code

  • intro: ICCV 2017. University of Maryland
  • keywords: Soft-NMS
  • arxiv: https://arxiv.org/abs/1704.04503
  • github: https://github.com/bharatsingh430/soft-nms

Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection

  • intro: CMU & Megvii Inc. (Face++)
  • arxiv: https://arxiv.org/abs/1809.08545
  • github: https://github.com/yihui-he/softer-NMS

Learning non-maximum suppression

  • intro: CVPR 2017
  • project page: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/object-recognition-and-scene-understanding/learning-nms/
  • arxiv: https://arxiv.org/abs/1705.02950
  • github: https://github.com/hosang/gossipnet

Relation Networks for Object Detection

  • intro: CVPR 2018 oral
  • arxiv: https://arxiv.org/abs/1711.11575
  • github(official, MXNet): https://github.com/msracver/Relation-Networks-for-Object-Detection

Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes

  • keywords: Pairwise-NMS
  • arxiv: https://arxiv.org/abs/1901.03796

Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples

https://arxiv.org/abs/1902.02067

NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing

  • intro: CVPR 2020
  • intro: Waseda University & Tencent AI Lab
  • arxiv: https://arxiv.org/abs/2003.12729

Hashing-based Non-Maximum Suppression for Crowded Object Detection

  • intro: Microsoft
  • arxiv: https://arxiv.org/abs/2005.11426
  • github: https://github.com/microsoft/hnms

Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in Crowded Traffic Scenes

  • intro: NeurIPS 2019, Machine Learning for Autonomous Driving Workshop
  • intro: Mercedes-Benz AG, R&D & University of Jena
  • keywords: Visibility Guided NMS (vg-NMS)
  • arxiv: https://arxiv.org/abs/2006.08547

Determinantal Point Process as an alternative to NMS

https://arxiv.org/abs/2008.11451

Ref-NMS: Breaking Proposal Bottlenecks in Two-Stage Referring Expression Grounding

  • intro: Zhejiang University & Nanyang Technological University & Tencent AI Lab & Columbia University
  • arxiv: https://arxiv.org/abs/2009.01449

NMS-free

Object Detection Made Simpler by Eliminating Heuristic NMS

  • intro: Alibaba Group & Monash University & The University of Adelaide
  • arxiv: https://arxiv.org/abs/2101.11782
  • github: https://github.com/txdet/FCOSPss

Adversarial Examples

Adversarial Examples that Fool Detectors

  • intro: University of Illinois
  • arxiv: https://arxiv.org/abs/1712.02494

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

  • project page: http://nicholas.carlini.com/code/nn_breaking_detection/
  • arxiv: https://arxiv.org/abs/1705.07263
  • github: https://github.com/carlini/nn_breaking_detection

Knowledge Distillation

Mimicking Very Efficient Network for Object Detection

  • intro: CVPR 2017. SenseTime & Beihang University
  • paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

Quantization Mimic: Towards Very Tiny CNN for Object Detection

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1805.02152

Learning Efficient Detector with Semi-supervised Adaptive Distillation

  • intro: SenseTime Research
  • arxiv: https://arxiv.org/abs/1901.00366
  • github: https://github.com/Tangshitao/Semi-supervised-Adaptive-Distillation

Distilling Object Detectors with Fine-grained Feature Imitation

  • intro: CVPR 2019
  • intro: National University of Singapore & Huawei Noah’s Ark Lab
  • keywords: mimic
  • arxiv: https://arxiv.org/abs/1906.03609
  • github: https://github.com/twangnh/Distilling-Object-Detectors

GAN-Knowledge Distillation for one-stage Object Detection

https://arxiv.org/abs/1906.08467

Learning Lightweight Pedestrian Detector with Hierarchical Knowledge Distillation

  • intro: ICIP 2019 oral
  • arxiv: https://arxiv.org/abs/1909.09325

Improve Object Detection with Feature-based Knowledge Distillation: Towards Accurate and Efficient Detectors

  • intro: ICLR 2021 poster
  • openreview: https://openreview.net/forum?id=uKhGRvM8QNH
  • paper: https://openreview.net/pdf?id=uKhGRvM8QNH
  • github: https://github.com/ArchipLab-LinfengZhang/Object-Detection-Knowledge-Distillation-ICLR2021

G-DetKD: Towards General Distillation Framework for Object Detectors via Contrastive and Semantic-guided Feature Imitation

  • intro: Hong Kong University of Science and Technology & Huawei Noah’s Ark Lab
  • intro: ICCV 2021
  • arxiv: https://arxiv.org/abs/2108.07482

LGD: Label-guided Self-distillation for Object Detection

  • intro: MEGVII Technology & Xi’an Jiaotong University
  • arxiv: https://arxiv.org/abs/2109.11496

Deep Structured Instance Graph for Distilling Object Detectors

  • intro: ICCV 2021
  • intro: The Chinese University of Hong Kong & SmartMore
  • arxiv: https://arxiv.org/abs/2109.12862
  • github: https://github.com/dvlab-research/Dsig

Instance-Conditional Knowledge Distillation for Object Detection

  • intro: NeurIPS 2021 poster
  • intro: Xi’an Jiaotong University & MEGVII Technology
  • arxiv: https://arxiv.org/abs/2110.12724

Distilling Object Detectors with Feature Richness

  • intro: University of Science and Technology of China & CAS & Cambricon Technologies & University of Chinese Academy of Sciences
  • arxiv: https://arxiv.org/abs/2111.00674

Focal and Global Knowledge Distillation for Detectors

  • intro: Tsinghua Shenzhen International Graduate School & ByteDance Inc & BeiHang University
  • arxiv: https://arxiv.org/abs/2111.11837
  • github: https://github.com/yzd-v/FGD

Prediction-Guided Distillation for Dense Object Detection

  • intro: University of Edinburgh & Heriot-Watt University
  • arxiv: https://arxiv.org/abs/2203.05469
  • github: https://github.com/ChenhongyiYang/PGD

Task-Balanced Distillation for Object Detection

  • intro: Zhejiang University & SenseTime Research
  • arxiv: https://arxiv.org/abs/2208.03006

Rotated Object Detection

Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

  • intro: Shanghai Jiao Tong University & Huawei Inc. & Beijing Institute of Technology
  • arxiv: https://arxiv.org/abs/2101.11952
  • github: https://github.com/yangxue0827/RotationDetection

Long-Tailed Object Detection

Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

  • intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
  • project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
  • arxiv: http://arxiv.org/abs/1601.05150

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax

  • intro: CVPR 2020 oral
  • arxiv: https://arxiv.org/abs/2006.10408
  • github: https://github.com/FishYuLi/BalancedGroupSoftmax

Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection

  • intro: Tongji University & SenseTime Research & Tsinghua University
  • arxiv: https://arxiv.org/abs/2012.08548

A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection

  • intro: The Ohio State University & University of Central Florida & University of Southern California & Google Research
  • arxiv: https://arxiv.org/abs/2102.08884

Adaptive Class Suppression Loss for Long-Tail Object Detection

  • intro: CVPR 2021
  • arxiv: https://arxiv.org/abs/2104.00885
  • github: https://github.com/CASIA-IVA-Lab/ACSL

Weakly Supervised Object Detection

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1604.05766

Weakly supervised object detection using pseudo-strong labels

  • arxiv: http://arxiv.org/abs/1607.04731

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

  • intro: IJCAI 2017
  • arxiv: https://arxiv.org/abs/1706.06768

Visual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object Detection

  • intro: TPAMI 2017. National Institutes of Health (NIH) Clinical Center
  • arxiv: https://arxiv.org/abs/1801.03145

Video Object Detection

Learning Object Class Detectors from Weakly Annotated Video

  • intro: CVPR 2012
  • paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection

  • arxiv: https://arxiv.org/abs/1501.01186

Video Object Recognition

Deep Learning for Saliency Prediction in Natural Video

  • intro: Submitted on 12 Jan 2016
  • keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
  • paper: https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

  • intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
  • arxiv: http://arxiv.org/abs/1604.02532
  • github: https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks

  • intro: CVPR 2016 Spotlight paper
  • arxiv: https://arxiv.org/abs/1604.04053
  • paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
  • gihtub: https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

  • intro: BMVC 2016
  • keywords: pseudo-labeler
  • arxiv: http://arxiv.org/abs/1607.04648
  • paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images

  • intro: WangTao @ 爱奇艺
  • keywords: object retrieval, object detection, scene classification
  • slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Object Detection in Videos with Tubelet Proposal Networks

  • arxiv: https://arxiv.org/abs/1702.06355

Flow-Guided Feature Aggregation for Video Object Detection

  • intro: MSRA
  • arxiv: https://arxiv.org/abs/1703.10025

Video Object Detection using Faster R-CNN

  • blog: http://andrewliao11.github.io/object_detection/faster_rcnn/
  • github: https://github.com/andrewliao11/py-faster-rcnn-imagenet

Improving Context Modeling for Video Object Detection and Tracking

http://image-net.org/challenges/talks_2017/ilsvrc2017_short(poster).pdf

Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.00666

Mobile Video Object Detection with Temporally-Aware Feature Maps

https://arxiv.org/abs/1711.06368

Towards High Performance Video Object Detection

https://arxiv.org/abs/1711.11577

Impression Network for Video Object Detection

https://arxiv.org/abs/1712.05896

Spatial-Temporal Memory Networks for Video Object Detection

https://arxiv.org/abs/1712.06317

3D-DETNet: a Single Stage Video-Based Vehicle Detector

https://arxiv.org/abs/1801.01769

Object Detection in Videos by Short and Long Range Object Linking

https://arxiv.org/abs/1801.09823

Object Detection in Video with Spatiotemporal Sampling Networks

  • intro: University of Pennsylvania, 2Dartmouth College
  • arxiv: https://arxiv.org/abs/1803.05549

Towards High Performance Video Object Detection for Mobiles

  • intro: Microsoft Research Asia
  • arxiv: https://arxiv.org/abs/1804.05830

Optimizing Video Object Detection via a Scale-Time Lattice

  • intro: CVPR 2018
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/ST-Lattice/
  • arxiv: https://arxiv.org/abs/1804.05472
  • github: https://github.com/hellock/scale-time-lattice

Pack and Detect: Fast Object Detection in Videos Using Region-of-Interest Packing

https://arxiv.org/abs/1809.01701

Fast Object Detection in Compressed Video

https://arxiv.org/abs/1811.11057

Tube-CNN: Modeling temporal evolution of appearance for object detection in video

  • intro: INRIA/ENS
  • arxiv: https://arxiv.org/abs/1812.02619

AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling

  • intro: SysML 2019 oral
  • arxiv: https://arxiv.org/abs/1902.02910

SCNN: A General Distribution based Statistical Convolutional Neural Network with Application to Video Object Detection

  • intro: AAAI 2019
  • arxiv: https://arxiv.org/abs/1903.07663

Looking Fast and Slow: Memory-Guided Mobile Video Object Detection

  • intro: Cornell University & Google AI
  • arxiv: https://arxiv.org/abs/1903.10172

Progressive Sparse Local Attention for Video object detection

  • intro: NLPR,CASIA & Horizon Robotics
  • arxiv: https://arxiv.org/abs/1903.09126

Sequence Level Semantics Aggregation for Video Object Detection

  • intro: ICCV 2019 oral
  • arxiv: https://arxiv.org/abs/1907.06390
  • github(MXNet): https://github.com/happywu/Sequence-Level-Semantics-Aggregation

Object Detection in Video with Spatial-temporal Context Aggregation

  • intro: Huazhong University of Science and Technology & Horizon Robotics Inc.
  • arxiv: https://arxiv.org/abs/1907.04988

A Delay Metric for Video Object Detection: What Average Precision Fails to Tell

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1908.06368

Minimum Delay Object Detection From Video

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1908.11092

Learning Motion Priors for Efficient Video Object Detection

https://arxiv.org/abs/1911.05253

Object-aware Feature Aggregation for Video Object Detection

  • intro: Beihang University & Capital Normal University & The University of Hong Kong & Baidu, Inc.
  • arxiv: https://arxiv.org/abs/2010.12573

End-to-End Video Object Detection with Spatial-Temporal Transformers

  • arxiv: https://arxiv.org/abs/2105.10920
  • github: https://github.com/SJTU-LuHe/TransVOD

Object Detection on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices

  • intro: ICLR 2018 workshop track
  • intro: based on the SSD
  • arxiv: https://arxiv.org/abs/1804.06882
  • github: https://github.com/Robert-JunWang/Pelee

Object Detection on RGB-D

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

  • arxiv: http://arxiv.org/abs/1407.5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

  • intro: CVPR 2016
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

https://arxiv.org/abs/1703.03347

Cross-Modal Attentional Context Learning for RGB-D Object Detection

  • intro: IEEE Transactions on Image Processing
  • arxiv: https://arxiv.org/abs/1810.12829

Zero-Shot Object Detection

Zero-Shot Detection

  • intro: Australian National University
  • keywords: YOLO
  • arxiv: https://arxiv.org/abs/1803.07113

Zero-Shot Object Detection

https://arxiv.org/abs/1804.04340

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

  • intro: Australian National University
  • arxiv: https://arxiv.org/abs/1803.06049

Zero-Shot Object Detection by Hybrid Region Embedding

  • intro: Middle East Technical University & Hacettepe University
  • arxiv: https://arxiv.org/abs/1805.06157

Visual Relationship Detection

Visual Relationship Detection with Language Priors

  • intro: ECCV 2016 oral
  • paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
  • github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

  • intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
  • arxiv: https://arxiv.org/abs/1702.07191

Visual Translation Embedding Network for Visual Relation Detection

  • arxiv: https://www.arxiv.org/abs/1702.08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

  • intro: CVPR 2017 spotlight paper
  • arxiv: https://arxiv.org/abs/1703.03054

Detecting Visual Relationships with Deep Relational Networks

  • intro: CVPR 2017 oral. The Chinese University of Hong Kong
  • arxiv: https://arxiv.org/abs/1704.03114

Identifying Spatial Relations in Images using Convolutional Neural Networks

https://arxiv.org/abs/1706.04215

PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN

  • intro: ICCV
  • arxiv: https://arxiv.org/abs/1708.01956

Natural Language Guided Visual Relationship Detection

https://arxiv.org/abs/1711.06032

Detecting Visual Relationships Using Box Attention

  • intro: Google AI & IST Austria
  • arxiv: https://arxiv.org/abs/1807.02136

Google AI Open Images - Visual Relationship Track

  • intro: Detect pairs of objects in particular relationships
  • kaggle: https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track

Context-Dependent Diffusion Network for Visual Relationship Detection

  • intro: 2018 ACM Multimedia Conference
  • arxiv: https://arxiv.org/abs/1809.06213

A Problem Reduction Approach for Visual Relationships Detection

  • intro: ECCV 2018 Workshop
  • arxiv: https://arxiv.org/abs/1809.09828

Exploring the Semantics for Visual Relationship Detection

https://arxiv.org/abs/1904.02104

Face Detection

Multi-view Face Detection Using Deep Convolutional Neural Networks

  • intro: Yahoo
  • arxiv: http://arxiv.org/abs/1502.02766
  • github: https://github.com/guoyilin/FaceDetection_CNN

From Facial Parts Responses to Face Detection: A Deep Learning Approach

img

  • intro: ICCV 2015. CUHK
  • project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
  • arxiv: https://arxiv.org/abs/1509.06451
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

Compact Convolutional Neural Network Cascade for Face Detection

  • arxiv: http://arxiv.org/abs/1508.01292
  • github: https://github.com/Bkmz21/FD-Evaluation
  • github: https://github.com/Bkmz21/CompactCNNCascade

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1606.00850
  • github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

  • intro: CMU
  • arxiv: https://arxiv.org/abs/1606.05413

Towards a Deep Learning Framework for Unconstrained Face Detection

  • intro: overlap with CMS-RCNN
  • arxiv: https://arxiv.org/abs/1612.05322

Supervised Transformer Network for Efficient Face Detection

  • arxiv: http://arxiv.org/abs/1607.05477

UnitBox: An Advanced Object Detection Network

  • intro: ACM MM 2016
  • intro: University of Illinois at Urbana−Champaign & Megvii Inc
  • keywords: IOULoss
  • arxiv: http://arxiv.org/abs/1608.01471

Bootstrapping Face Detection with Hard Negative Examples

  • author: 万韶华 @ 小米.
  • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
  • arxiv: http://arxiv.org/abs/1608.02236

Grid Loss: Detecting Occluded Faces

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1609.00129
  • paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
  • poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector

  • intro: ICPR 2016
  • arxiv: http://arxiv.org/abs/1609.03536

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

img

  • project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
  • arxiv: https://arxiv.org/abs/1604.02878
  • github(official, Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
  • github: https://github.com/pangyupo/mxnet_mtcnn_face_detection
  • github: https://github.com/DaFuCoding/MTCNN_Caffe
  • github(MXNet): https://github.com/Seanlinx/mtcnn
  • github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion
  • github(Caffe): https://github.com/foreverYoungGitHub/MTCNN
  • github: https://github.com/CongWeilin/mtcnn-caffe
  • github(OpenCV+OpenBlas): https://github.com/AlphaQi/MTCNN-light
  • github(Tensorflow+golang): https://github.com/jdeng/goface

Face Detection using Deep Learning: An Improved Faster RCNN Approach

  • intro: DeepIR Inc
  • arxiv: https://arxiv.org/abs/1701.08289

Faceness-Net: Face Detection through Deep Facial Part Responses

  • intro: An extended version of ICCV 2015 paper
  • arxiv: https://arxiv.org/abs/1701.08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

  • intro: CVPR 2017. MP-RCNN, MP-RPN
  • arxiv: https://arxiv.org/abs/1703.09145

End-To-End Face Detection and Recognition

https://arxiv.org/abs/1703.10818

Face R-CNN

https://arxiv.org/abs/1706.01061

Face Detection through Scale-Friendly Deep Convolutional Networks

https://arxiv.org/abs/1706.02863

Scale-Aware Face Detection

  • intro: CVPR 2017. SenseTime & Tsinghua University
  • arxiv: https://arxiv.org/abs/1706.09876

Detecting Faces Using Inside Cascaded Contextual CNN

  • intro: CVPR 2017. Tencent AI Lab & SenseTime
  • paper: http://ai.tencent.com/ailab/media/publications/Detecting_Faces_Using_Inside_Cascaded_Contextual_CNN.pdf

Multi-Branch Fully Convolutional Network for Face Detection

https://arxiv.org/abs/1707.06330

SSH: Single Stage Headless Face Detector

  • intro: ICCV 2017. University of Maryland
  • arxiv: https://arxiv.org/abs/1708.03979
  • github(official, Caffe): https://github.com/mahyarnajibi/SSH

Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container

https://arxiv.org/abs/1708.04370

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

  • intro: IJCB 2017
  • keywords: Rapidly Digested Convolutional Layers (RDCL), Multiple Scale Convolutional Layers (MSCL)
  • intro: the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05234
  • github(official): https://github.com/sfzhang15/FaceBoxes
  • github(Caffe): https://github.com/zeusees/FaceBoxes

S3FD: Single Shot Scale-invariant Face Detector

  • intro: ICCV 2017. Chinese Academy of Sciences
  • intro: can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images
  • arxiv: https://arxiv.org/abs/1708.05237
  • github(Caffe, official): https://github.com/sfzhang15/SFD
  • github: https://github.com//clcarwin/SFD_pytorch

Detecting Faces Using Region-based Fully Convolutional Networks

https://arxiv.org/abs/1709.05256

AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection

https://arxiv.org/abs/1709.07326

Face Attention Network: An effective Face Detector for the Occluded Faces

https://arxiv.org/abs/1711.07246

Feature Agglomeration Networks for Single Stage Face Detection

https://arxiv.org/abs/1712.00721

Face Detection Using Improved Faster RCNN

  • intro: Huawei Cloud BU
  • arxiv: https://arxiv.org/abs/1802.02142

PyramidBox: A Context-assisted Single Shot Face Detector

  • intro: Baidu, Inc
  • arxiv: https://arxiv.org/abs/1803.07737

PyramidBox++: High Performance Detector for Finding Tiny Face

  • intro: Chinese Academy of Sciences & Baidu, Inc.
  • arxiv: https://arxiv.org/abs/1904.00386

A Fast Face Detection Method via Convolutional Neural Network

  • intro: Neurocomputing
  • arxiv: https://arxiv.org/abs/1803.10103

Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy

  • intro: CVPR 2018. Beihang University & CUHK & Sensetime
  • arxiv: https://arxiv.org/abs/1804.05197

Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1804.06039
  • github(binary library): https://github.com/Jack-CV/PCN

SFace: An Efficient Network for Face Detection in Large Scale Variations

  • intro: Beihang University & Megvii Inc. (Face++)
  • arxiv: https://arxiv.org/abs/1804.06559

Survey of Face Detection on Low-quality Images

https://arxiv.org/abs/1804.07362

Anchor Cascade for Efficient Face Detection

  • intro: The University of Sydney
  • arxiv: https://arxiv.org/abs/1805.03363

Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization

  • intro: IEEE MMSP
  • arxiv: https://arxiv.org/abs/1805.12302

Selective Refinement Network for High Performance Face Detection

https://arxiv.org/abs/1809.02693

DSFD: Dual Shot Face Detector

https://arxiv.org/abs/1810.10220

Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision

https://arxiv.org/abs/1811.08557

FA-RPN: Floating Region Proposals for Face Detection

https://arxiv.org/abs/1812.05586

Robust and High Performance Face Detector

https://arxiv.org/abs/1901.02350

DAFE-FD: Density Aware Feature Enrichment for Face Detection

https://arxiv.org/abs/1901.05375

Improved Selective Refinement Network for Face Detection

  • intro: Chinese Academy of Sciences & JD AI Research
  • arxiv: https://arxiv.org/abs/1901.06651

Revisiting a single-stage method for face detection

https://arxiv.org/abs/1902.01559

MSFD:Multi-Scale Receptive Field Face Detector

  • intro: ICPR 2018
  • arxiv: https://arxiv.org/abs/1903.04147

LFFD: A Light and Fast Face Detector for Edge Devices

  • arxiv: https://arxiv.org/abs/1904.10633
  • github: https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices

RetinaFace: Single-stage Dense Face Localisation in the Wild

  • intro: CVPR 2020
  • arxiv: https://arxiv.org/abs/1905.00641
  • gihtub: https://github.com/deepinsight/insightface/tree/master/RetinaFace

BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs

  • intro: CVPR Workshop on Computer Vision for Augmented and Virtual Reality, 2019
  • arxiv: https://arxiv.org/abs/1907.05047

HAMBox: Delving into Online High-quality Anchors Mining for Detecting Outer Faces

  • intro: Baidu Inc. & Chinese Academy of Sciences
  • arxiv: https://arxiv.org/abs/1912.09231

KPNet: Towards Minimal Face Detector

  • intro: AAAI 2020
  • arxiv: https://arxiv.org/abs/2003.07543

ASFD: Automatic and Scalable Face Detector

  • intro: Youtu Lab, Tencent & Southeast University & Xiamen University
  • arxiv: https://arxiv.org/abs/2003.11228

TinaFace: Strong but Simple Baseline for Face Detection

  • intro: Media Intelligence Technology Co.,Ltd
  • arxiv: https://arxiv.org/abs/2011.13183
  • github(PyTorch): https://github.com/Media-Smart/vedadet

MogFace: Rethinking Scale Augmentation on the Face Detector

  • intro: Alibaba Group & Imperial College
  • arxiv: https://arxiv.org/abs/2103.11139

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection

  • intro: CVPR 2021
  • intro: Peking University
  • project page: https://daooshee.github.io/HLA-Face-Website/
  • arxiv: https://arxiv.org/abs/2104.01984
  • github: https://github.com/daooshee/HLA-Face-Code

1st Place Solutions for UG2+ Challenge 2021 – (Semi-)supervised Face detection in the low light condition

  • intro: Tomorrow Advancing Life (TAL) Education Group
  • arxiv: https://arxiv.org/abs/2107.00818

MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation

  • intro: BMVC 2021
  • arxiv: https://arxiv.org/abs/2110.10953
  • github: https://github.com/lyp-deeplearning/MOS-Multi-Task-Face-Detect

Detect Small Faces

Finding Tiny Faces

  • intro: CVPR 2017. CMU
  • project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html
  • arxiv: https://arxiv.org/abs/1612.04402
  • github(official, Matlab): https://github.com/peiyunh/tiny
  • github(inference-only): https://github.com/chinakook/hr101_mxnet
  • github: https://github.com/cydonia999/Tiny_Faces_in_Tensorflow

Detecting and counting tiny faces

  • intro: ENS Paris-Saclay. ExtendedTinyFaces
  • intro: Detecting and counting small objects - Analysis, review and application to counting
  • arxiv: https://arxiv.org/abs/1801.06504
  • github: https://github.com/alexattia/ExtendedTinyFaces

Seeing Small Faces from Robust Anchor’s Perspective

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1802.09058

Face-MagNet: Magnifying Feature Maps to Detect Small Faces

  • intro: WACV 2018
  • keywords: Face Magnifier Network (Face-MageNet)
  • arxiv: https://arxiv.org/abs/1803.05258
  • github: https://github.com/po0ya/face-magnet

Robust Face Detection via Learning Small Faces on Hard Images

  • intro: Johns Hopkins University & Stanford University
  • arxiv: https://arxiv.org/abs/1811.11662
  • github: https://github.com/bairdzhang/smallhardface

SFA: Small Faces Attention Face Detector

  • intro: Jilin University
  • arxiv: https://arxiv.org/abs/1812.08402

Person Head Detection

Context-aware CNNs for person head detection

  • intro: ICCV 2015
  • project page: http://www.di.ens.fr/willow/research/headdetection/
  • arxiv: http://arxiv.org/abs/1511.07917
  • github: https://github.com/aosokin/cnn_head_detection

Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture

https://arxiv.org/abs/1803.09256

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications

https://arxiv.org/abs/1809.03336

FCHD: A fast and accurate head detector

  • arxiv: https://arxiv.org/abs/1809.08766
  • github(PyTorch, official): https://github.com/aditya-vora/FCHD-Fully-Convolutional-Head-Detector

Relational Learning for Joint Head and Human Detection

  • keywords: JointDet, head-body Relationship Discriminating Module (RDM)
  • arxiv: https://arxiv.org/abs/1909.10674

Body-Face Joint Detection via Embedding and Head Hook

  • intro: ICCV 2021
  • paper: https://openaccess.thecvf.com/content/ICCV2021/papers/Wan_Body-Face_Joint_Detection_via_Embedding_and_Head_Hook_ICCV_2021_paper.pdf
  • gihtub: https://github.com/AibeeDetect/BFJDet

Pedestrian Detection / People Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

  • intro: CVPR 2015
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
  • arxiv: http://arxiv.org/abs/1412.0069

Deep Learning Strong Parts for Pedestrian Detection

  • intro: ICCV 2015. CUHK. DeepParts
  • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
  • paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

Taking a Deeper Look at Pedestrians

  • intro: CVPR 2015
  • arxiv: https://arxiv.org/abs/1501.05790

Convolutional Channel Features

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1504.07339
  • github: https://github.com/byangderek/CCF

End-to-end people detection in crowded scenes

  • arxiv: http://arxiv.org/abs/1506.04878
  • github: https://github.com/Russell91/reinspect
  • ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
  • youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24

Learning Complexity-Aware Cascades for Deep Pedestrian Detection

  • intro: ICCV 2015
  • arxiv: https://arxiv.org/abs/1507.05348

Deep convolutional neural networks for pedestrian detection

  • arxiv: http://arxiv.org/abs/1510.03608
  • github: https://github.com/DenisTome/DeepPed

Scale-aware Fast R-CNN for Pedestrian Detection

  • arxiv: https://arxiv.org/abs/1510.08160

New algorithm improves speed and accuracy of pedestrian detection

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
  • arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

  • arxiv: http://arxiv.org/abs/1607.04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

  • arxiv: http://arxiv.org/abs/1607.04441

Is Faster R-CNN Doing Well for Pedestrian Detection?

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.07032
  • github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

Unsupervised Deep Domain Adaptation for Pedestrian Detection

  • intro: ECCV Workshop 2016
  • arxiv: https://arxiv.org/abs/1802.03269

Reduced Memory Region Based Deep Convolutional Neural Network Detection

  • intro: IEEE 2016 ICCE-Berlin
  • arxiv: http://arxiv.org/abs/1609.02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

  • arxiv: https://arxiv.org/abs/1610.03466

Detecting People in Artwork with CNNs

  • intro: ECCV 2016 Workshops
  • arxiv: https://arxiv.org/abs/1610.08871

Deep Multi-camera People Detection

  • arxiv: https://arxiv.org/abs/1702.04593

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

  • intro: CVPR 2017
  • project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/
  • arxiv: https://arxiv.org/abs/1703.06283
  • github(Tensorflow): https://github.com/huangshiyu13/RPNplus

What Can Help Pedestrian Detection?

  • intro: CVPR 2017. Tsinghua University & Peking University & Megvii Inc.
  • keywords: Faster R-CNN, HyperLearner
  • arxiv: https://arxiv.org/abs/1705.02757
  • paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Mao_What_Can_Help_CVPR_2017_paper.pdf

Illuminating Pedestrians via Simultaneous Detection & Segmentation

https://arxiv.org/abs/1706.08564

Rotational Rectification Network for Robust Pedestrian Detection

  • intro: CMU & Volvo Construction
  • arxiv: https://arxiv.org/abs/1706.08917

STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos

  • intro: The University of North Carolina at Chapel Hill
  • arxiv: https://arxiv.org/abs/1707.09100

Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy

https://arxiv.org/abs/1709.00235

Aggregated Channels Network for Real-Time Pedestrian Detection

https://arxiv.org/abs/1801.00476

Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection

https://arxiv.org/abs/1804.00872

Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond

https://arxiv.org/abs/1804.02047

PCN: Part and Context Information for Pedestrian Detection with CNNs

  • intro: British Machine Vision Conference(BMVC) 2017
  • arxiv: https://arxiv.org/abs/1804.04483

Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

  • intro: CVPR 2018
  • paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Noh_Improving_Occlusion_and_CVPR_2018_paper.pdf

Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation

  • intro: ECCV 2018
  • intro: Hikvision Research Institute
  • arxiv: https://arxiv.org/abs/1807.01438

Bi-box Regression for Pedestrian Detection and Occlusion Estimation

  • intro: ECCV 2018
  • paper: http://openaccess.thecvf.com/content_ECCV_2018/papers/CHUNLUAN_ZHOU_Bi-box_Regression_for_ECCV_2018_paper.pdf
  • github(Pytorch): https://github.com/rainofmine/Bi-box_Regression

Pedestrian Detection with Autoregressive Network Phases

  • intro: Michigan State University
  • arxiv: https://arxiv.org/abs/1812.00440

SSA-CNN: Semantic Self-Attention CNN for Pedestrian Detection

https://arxiv.org/abs/1902.09080

High-level Semantic Feature Detection:A New Perspective for Pedestrian Detection

Center and Scale Prediction: A Box-free Approach for Object Detection

  • intro: CVPR 2019
  • intro: National University of Defense Technology & Chinese Academy of Sciences & Inception Institute of Artificial Intelligence (IIAI) & Horizon Robotics Inc.
  • arxiv: https://arxiv.org/abs/1904.02948
  • github(official, Keras): https://github.com/liuwei16/CSP

Evading Real-Time Person Detectors by Adversarial T-shirt

https://arxiv.org/abs/1910.11099

Coupled Network for Robust Pedestrian Detection with Gated Multi-Layer Feature Extraction and Deformable Occlusion Handling

https://arxiv.org/abs/1912.08661

Scale Match for Tiny Person Detection

  • intro: WACV 2020
  • arxiv: https://arxiv.org/abs/1912.10664
  • github: https://github.com/ucas-vg/TinyBenchmark

SM+: Refined Scale Match for Tiny Person Detection

https://arxiv.org/abs/2102.03558

Resisting the Distracting-factors in Pedestrian Detection

  • intro: Beihang University & Arizona State University
  • arxiv: https://arxiv.org/abs/2005.07344

SADet: Learning An Efficient and Accurate Pedestrian Detector

https://arxiv.org/abs/2007.13119

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination

  • intro: ACM MM 2020
  • intro: Tencent Youtu Lab
  • arxiv: https://arxiv.org/abs/2007.13376

Anchor-free Small-scale Multispectral Pedestrian Detection

  • intro: BMVC 2020
  • arxiv: https://arxiv.org/abs/2008.08418
  • github: https://github.com/HensoldtOptronicsCV/MultispectralPedestrianDetection

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection

  • arxiv: https://arxiv.org/abs/2101.04307
  • github: https://github.com/Megvii-BaseDetection/LLA

DETR for Pedestrian Detection

https://arxiv.org/abs/2012.06785

V2F-Net: Explicit Decomposition of Occluded Pedestrian Detection

  • intro: MEGVII Technology & Texas A&M University
  • arxiv: https://arxiv.org/abs/2104.03106

Pedestrian Detection in a Crowd

Repulsion Loss: Detecting Pedestrians in a Crowd

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1711.07752

Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd

  • intro: ECCV 2018
  • arxiv: https://arxiv.org/abs/1807.08407

Adaptive NMS: Refining Pedestrian Detection in a Crowd

  • intro: CVPR 2019 oral
  • arxiv: https://arxiv.org/abs/1904.03629

PedHunter: Occlusion Robust Pedestrian Detector in Crowded Scenes

  • keywords: SUR-PED
  • arxiv: https://arxiv.org/abs/1909.06826

Double Anchor R-CNN for Human Detection in a Crowd

  • intro: Megvii Inc. (Face++) & Tsinghua University & Xi’an Jiaotong University & Zhejiang University
  • arxiv: https://arxiv.org/abs/1909.09998

CSID: Center, Scale, Identity and Density-aware Pedestrian Detection in a Crowd

https://arxiv.org/abs/1910.09188

Semantic Head Enhanced Pedestrian Detection in a Crowd

https://arxiv.org/abs/1911.11985

Detection in Crowded Scenes: One Proposal, Multiple Predictions

  • intro: CVPR 2020 Oral
  • arxiv: https://arxiv.org/abs/2003.09163
  • github: https://github.com/Purkialo/CrowdDet

Visible Feature Guidance for Crowd Pedestrian Detection

  • intro: ECCV 2020 RLQ Workshop
  • arxiv: https://arxiv.org/abs/2008.09993

Occluded Pedestrian Detection

Mask-Guided Attention Network for Occluded Pedestrian Detection

  • intro: ICCV 2019
  • arxiv: https://arxiv.org/abs/1910.06160
  • github: https://github.com/Leotju/MGAN

Multispectral Pedestrian Detection

Multispectral Deep Neural Networks for Pedestrian Detection

  • intro: BMVC 2016 oral
  • arxiv: https://arxiv.org/abs/1611.02644

Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection

  • intro: State Key Lab of CAD&CG, Zhejiang University
  • arxiv: https://arxiv.org/abs/1803.05347

Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation

  • intro: BMVC 2018
  • arxiv: https://arxiv.org/abs/1808.04818

The Cross-Modality Disparity Problem in Multispectral Pedestrian Detection

https://arxiv.org/abs/1901.02645

Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection

https://arxiv.org/abs/1902.05291

GFD-SSD: Gated Fusion Double SSD for Multispectral Pedestrian Detection

https://arxiv.org/abs/1903.06999

Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

https://arxiv.org/abs/1904.03692

Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.04564

Evolving Boxes for fast Vehicle Detection

  • arxiv: https://arxiv.org/abs/1702.00254

Fine-Grained Car Detection for Visual Census Estimation

  • intro: AAAI 2016
  • arxiv: https://arxiv.org/abs/1709.02480

SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

  • intro: IEEE Transactions on Intelligent Transportation Systems (T-ITS)
  • arxiv: https://arxiv.org/abs/1804.00433

Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data

  • intro: UC Berkeley
  • arxiv: https://arxiv.org/abs/1808.08603

Domain Randomization for Scene-Specific Car Detection and Pose Estimation

https://arxiv.org/abs/1811.05939

ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery

  • intro: ECCV 2018, UAVision 2018
  • arxiv: https://arxiv.org/abs/1811.06318

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

  • intro: CVPR 2016
  • project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
  • code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data

  • intro: CVPR 2017 workshop
  • paper: http://openaccess.thecvf.com/content_cvpr_2017_workshops/w9/papers/Jensen_Evaluating_State-Of-The-Art_Object_CVPR_2017_paper.pdf

Detecting Small Signs from Large Images

  • intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
  • arxiv: https://arxiv.org/abs/1706.08574

Localized Traffic Sign Detection with Multi-scale Deconvolution Networks

https://arxiv.org/abs/1804.10428

Detecting Traffic Lights by Single Shot Detection

  • intro: ITSC 2018
  • arxiv: https://arxiv.org/abs/1805.02523

A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection

  • intro: IEEE 15th Conference on Computer and Robot Vision
  • arxiv: https://arxiv.org/abs/1806.07987
  • demo: https://www.youtube.com/watch?v=_YmogPzBXOw&feature=youtu.be

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

img

  • arxiv: http://arxiv.org/abs/1603.09446
  • github: https://github.com/zeakey/DeepSkeleton

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

  • arxiv: http://arxiv.org/abs/1609.03659

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1703.02243
  • github: https://github.com/KevinKecc/SRN

Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

https://arxiv.org/abs/1801.01849

Fruit Detection

Deep Fruit Detection in Orchards

  • arxiv: https://arxiv.org/abs/1610.03677

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

  • intro: The Journal of Field Robotics in May 2016
  • project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
  • arxiv: https://arxiv.org/abs/1610.08120

Shadow Detection

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

https://arxiv.org/abs/1709.09283

A+D-Net: Shadow Detection with Adversarial Shadow Attenuation

https://arxiv.org/abs/1712.01361

Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal

https://arxiv.org/abs/1712.02478

Direction-aware Spatial Context Features for Shadow Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1712.04142

Direction-aware Spatial Context Features for Shadow Detection and Removal

  • intro: The Chinese University of Hong Kong & The Hong Kong Polytechnic University
  • arxiv: https://arxiv.org/abs/1805.04635

Others Detection

Deep Deformation Network for Object Landmark Localization

  • arxiv: http://arxiv.org/abs/1605.01014

Fashion Landmark Detection in the Wild

  • intro: ECCV 2016
  • project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
  • arxiv: http://arxiv.org/abs/1608.03049
  • github(Caffe): https://github.com/liuziwei7/fashion-landmarks

Deep Learning for Fast and Accurate Fashion Item Detection

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

img

  • github: https://github.com/geometalab/OSMDeepOD

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

  • intro: IEEE SITIS 2016
  • arxiv: https://arxiv.org/abs/1611.04357

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

  • arxiv: https://arxiv.org/abs/1611.05424

Deep Cuboid Detection: Beyond 2D Bounding Boxes

  • intro: CMU & Magic Leap
  • arxiv: https://arxiv.org/abs/1611.10010

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

  • arxiv: https://arxiv.org/abs/1612.03019

Deep Learning Logo Detection with Data Expansion by Synthesising Context

  • arxiv: https://arxiv.org/abs/1612.09322

Scalable Deep Learning Logo Detection

https://arxiv.org/abs/1803.11417

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

  • arxiv: https://arxiv.org/abs/1702.00307

Automatic Handgun Detection Alarm in Videos Using Deep Learning

  • arxiv: https://arxiv.org/abs/1702.05147
  • results: https://github.com/SihamTabik/Pistol-Detection-in-Videos

Objects as context for part detection

https://arxiv.org/abs/1703.09529

Using Deep Networks for Drone Detection

  • intro: AVSS 2017
  • arxiv: https://arxiv.org/abs/1706.05726

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.01642

Target Driven Instance Detection

https://arxiv.org/abs/1803.04610

DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion

https://arxiv.org/abs/1709.04577

VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1710.06288
  • github: https://github.com/SeokjuLee/VPGNet

Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants

https://arxiv.org/abs/1711.05128

ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos

  • intro: WACV 2018
  • arxiv: https://arxiv.org/abs/1801.02031

Deep Learning Object Detection Methods for Ecological Camera Trap Data

  • intro: Conference of Computer and Robot Vision. University of Guelph
  • arxiv: https://arxiv.org/abs/1803.10842

EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection

https://arxiv.org/abs/1806.05525

Towards End-to-End Lane Detection: an Instance Segmentation Approach

  • arxiv: https://arxiv.org/abs/1802.05591
  • github: https://github.com/MaybeShewill-CV/lanenet-lane-detection

Densely Supervised Grasp Detector (DSGD)

https://arxiv.org/abs/1810.03962

Object Proposal

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

  • arxiv: http://arxiv.org/abs/1510.04445
  • github: https://github.com/aghodrati/deepproposal

Scale-aware Pixel-wise Object Proposal Networks

  • intro: IEEE Transactions on Image Processing
  • arxiv: http://arxiv.org/abs/1601.04798

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

  • intro: BMVC 2016. AttractioNet
  • arxiv: https://arxiv.org/abs/1606.04446
  • github: https://github.com/gidariss/AttractioNet

Learning to Segment Object Proposals via Recursive Neural Networks

  • arxiv: https://arxiv.org/abs/1612.01057

Learning Detection with Diverse Proposals

  • intro: CVPR 2017
  • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
  • arxiv: https://arxiv.org/abs/1704.03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

  • keywords: product detection
  • arxiv: https://arxiv.org/abs/1704.06752

Improving Small Object Proposals for Company Logo Detection

  • intro: ICMR 2017
  • arxiv: https://arxiv.org/abs/1704.08881

Open Logo Detection Challenge

  • intro: BMVC 2018
  • keywords: QMUL-OpenLogo
  • project page: https://qmul-openlogo.github.io/
  • arxiv: https://arxiv.org/abs/1807.01964

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

  • intro: ACCV 2018 oral
  • arxiv: https://arxiv.org/abs/1811.08728
  • github: https://github.com/chwilms/AttentionMask

Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

  • intro: PhD Thesis
  • homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
  • phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
  • github(“SDS using hypercolumns”): https://github.com/bharath272/sds

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

  • arxiv: http://arxiv.org/abs/1503.00949

Weakly Supervised Object Localization Using Size Estimates

  • arxiv: http://arxiv.org/abs/1608.04314

Active Object Localization with Deep Reinforcement Learning

  • intro: ICCV 2015
  • keywords: Markov Decision Process
  • arxiv: https://arxiv.org/abs/1511.06015

Localizing objects using referring expressions

  • intro: ECCV 2016
  • keywords: LSTM, multiple instance learning (MIL)
  • paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
  • github: https://github.com/varun-nagaraja/referring-expressions

LocNet: Improving Localization Accuracy for Object Detection

  • intro: CVPR 2016 oral
  • arxiv: http://arxiv.org/abs/1511.07763
  • github: https://github.com/gidariss/LocNet

Learning Deep Features for Discriminative Localization

img

  • homepage: http://cnnlocalization.csail.mit.edu/
  • arxiv: http://arxiv.org/abs/1512.04150
  • github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
  • github: https://github.com/metalbubble/CAM
  • github: https://github.com/tdeboissiere/VGG16CAM-keras

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

img

  • intro: ECCV 2016
  • project page: http://www.di.ens.fr/willow/research/contextlocnet/
  • arxiv: http://arxiv.org/abs/1609.04331
  • github: https://github.com/vadimkantorov/contextlocnet

Ensemble of Part Detectors for Simultaneous Classification and Localization

https://arxiv.org/abs/1705.10034

STNet: Selective Tuning of Convolutional Networks for Object Localization

https://arxiv.org/abs/1708.06418

Soft Proposal Networks for Weakly Supervised Object Localization

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1709.01829

Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

  • intro: ACM MM 2017
  • arxiv: https://arxiv.org/abs/1709.08295

Tutorials / Talks

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

  • slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

Towards Good Practices for Recognition & Detection

  • intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
  • slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

Work in progress: Improving object detection and instance segmentation for small objects

https://docs.google.com/presentation/d/1OTfGn6mLe1VWE8D0q6Tu_WwFTSoLGd4OF8WCYnOWcVo/edit#slide=id.g37418adc7a_0_229

Object Detection with Deep Learning: A Review

https://arxiv.org/abs/1807.05511

Projects

Detectron

  • intro: FAIR’s research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
  • github: https://github.com/facebookresearch/Detectron

Detectron2

  • intro: Detectron2 is FAIR’s next-generation platform for object detection and segmentation.
  • github: https://github.com/facebookresearch/detectron2

MMDetection

  • intro: MMDetection: Open MMLab Detection Toolbox and Benchmark
  • arxiv: https://arxiv.org/abs/1906.07155
  • github: https://github.com/open-mmlab/mmdetection
  • docs: https://mmdetection.readthedocs.io/en/latest/

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition

  • intro: A Simple and Versatile Framework for Object Detection and Instance Recognition
  • github: https://github.com/TuSimple/simpledet

AdelaiDet

  • intro: AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.
  • github: https://github.com/aim-uofa/AdelaiDet/

TensorBox: a simple framework for training neural networks to detect objects in images

  • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
  • github: https://github.com/Russell91/TensorBox

NanoDet

  • intro: Super fast and lightweight anchor-free object detection model. Real-time on mobile devices.
  • arxiv: https://github.com/RangiLyu/nanodet

Object detection in torch: Implementation of some object detection frameworks in torch

  • github: https://github.com/fmassa/object-detection.torch

Using DIGITS to train an Object Detection network

  • github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

FCN-MultiBox Detector

  • intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
  • github: https://github.com/teaonly/FMD.torch

KittiBox: A car detection model implemented in Tensorflow.

  • keywords: MultiNet
  • intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
  • github: https://github.com/MarvinTeichmann/KittiBox

Deformable Convolutional Networks + MST + Soft-NMS

  • github: https://github.com/bharatsingh430/Deformable-ConvNets

How to Build a Real-time Hand-Detector using Neural Networks (SSD) on Tensorflow

  • blog: https://towardsdatascience.com/how-to-build-a-real-time-hand-detector-using-neural-networks-ssd-on-tensorflow-d6bac0e4b2ce
  • github: https://github.com//victordibia/handtracking

Metrics for object detection

  • intro: Most popular metrics used to evaluate object detection algorithms
  • github: https://github.com/rafaelpadilla/Object-Detection-Metrics

MobileNetv2-SSDLite

  • intro: Caffe implementation of SSD and SSDLite detection on MobileNetv2, converted from tensorflow.
  • github: https://github.com/chuanqi305/MobileNetv2-SSDLite

Leaderboard

Detection Results: VOC2012

  • intro: Competition “comp4” (train on additional data)
  • homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Tools

BeaverDam: Video annotation tool for deep learning training labels

https://github.com/antingshen/BeaverDam

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

  • keywords: Faster R-CNN
  • blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
  • demo: https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
  • review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

Deep Learning for Object Detection with DIGITS

  • blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

Analyzing The Papers Behind Facebook’s Computer Vision Approach

Easily Create High Quality Object Detectors with Deep Learning

  • intro: dlib v19.2
  • blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

  • blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
  • github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

Object Detection in Satellite Imagery, a Low Overhead Approach

  • part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
  • part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

  • part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
  • part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

Faster R-CNN Pedestrian and Car Detection

  • blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
  • ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
  • github: https://github.com/bigsnarfdude/Faster-RCNN_TF

Small U-Net for vehicle detection

  • blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

Region of interest pooling explained

  • blog: https://deepsense.io/region-of-interest-pooling-explained/
  • github: https://github.com/deepsense-io/roi-pooling

Supercharge your Computer Vision models with the TensorFlow Object Detection API

  • blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
  • github: https://github.com/tensorflow/models/tree/master/object_detection

Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning

https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

One-shot object detection

http://machinethink.net/blog/object-detection/

An overview of object detection: one-stage methods

https://www.jeremyjordan.me/object-detection-one-stage/

deep learning object detection

  • intro: A paper list of object detection using deep learning.
  • arxiv: https://github.com/hoya012/deep_learning_object_detection

[https://github.com/hoya012/deep_learning_object_detection]:

This post is licensed under CC BY 4.0 by the author.